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My case

• The basic structure of Information Geometry (IG) is a (dually) affine
Hessian manifold. The Riemannian structure is not enough.

• A generic parametric presentation could fit the need of Statistics
and Machine Learning, but it is not natural in other applications
e.g., Statistical Physics, Evolution Equation.

• It is useful exercise, even in studying statistical models on a finite
state space or Gaussian statistical models, to avoid the
parameterization.

• The affine and Hessian structure is feasible in the infinite
dimensional case. There are many options of that generalization,
the exponential representation of positive densities being one. The
use of smooth densities is another possible choice.



PART I: Non-parametric Information Geometry: finite
dimension

Even in the case of a finite state space there is an advantage in avoiding
the explicit parameterization of probabilities. Probabilities are represented
by random variables as centered log-likelihoods, tangent vectors are
represented by the score random variable.

• G. Pistone and M. P. Rogantin. The algebra of reversible Markov chains. Ann. Inst. Statist. Math.,
65(2):269–293, 2013

• G. Pistone. Lagrangian function on the finite state space statistical bundle. Entropy, 20(2):139, Feb 2018

• L. Malagò, L. Montrucchio, and G. Pistone. Wasserstein Riemannian geometry of positive definite
matrices. arXiv:1801.09269, 2018



Maximal exponential family

• We consider a finite sample space Ω, with #Ω = N. The probability
simplex is ∆(Ω) and ∆◦(Ω) is its interior. The uniform probability
on Ω is denoted µ, µ(x) = 1

N , x ∈ Ω. The expected value of
f : Ω→ R with respect to the density P ∈ E (µ) is denoted
EP [f ] = Eµ [fP] = 1

N

∑
x∈Ω f (x)P(x).

• The maximal exponential family E (µ) is the set of all strictly
positive probability densities of (Ω, µ) i.e., ∆◦(Ω). The name is
suggested by the fact every Q ∈ E (µ) can be expressed as

Q = exp

 n∑
j=1

θjTj − ψ(θ)


where Tj is a basis of the vector space of the random variables on Ω.



Statistical bundle

• The (exponential) statistical bundle is

S E (µ) = {(Q,V )|Q ∈ E (µ) ,EQ [V ] = 0} ,

and the linear fibers are

SQ E (µ) = {V |EQ [V ] = 0} .

The base of the bundle is E (µ), the exponential manifold.

• A section of the statistical bundle is a mapping

X : E (µ)→ ∪PSP E (µ) = L2(µ) .

such that X (P) ∈ SP E (µ), P ∈ E (µ).

• In statistical terms, a section is a mapping from the probability
densities to square-integrable random variable such that
EP [X (P)] = 0. If X̂ is a sample of X , then P̂ such that X̂ (P̂) = 0
is an estimation of the density P.



Algebra

• The statistical bundle is a semi-algebraic subset of R2N i.e., it is
defined by algebraic equations and strict inequalities namely,

∑
j qj = N ,∑
j qjvj = 0 ,

qj > 0 ,

j = 1, . . . ,N . (1)

It a real sub-manifold of R2N . A section is a mapping
∆◦ 3 q 7→ X (q) ∈ RN such that

∑
j qjXj(q) = 0. If X is smooth,

{(q,X (q)} is a sub-manifold.

• If we relax the positivity condition we get the algebraic variety
whose ideal is generated in the polynomial ring
R[(pj , qj) : j = 1, . . . , n] by the polynomials

∑
j qj − N and

∑
j qjvj .

The statistical interpretation is a model for the Information
Geometry of densities with total mass 1 but unrestricted in the sign.



Metric
• Each fiber SQ E (µ) is endowed with the inner product

(V1,V2) 7→ 〈V1,V2〉Q = EQ [V1V2] = CovQ (V1,V2) ,

which gives to each fiber the structure of the Hilbert space of L2
0(Q).

• While the statistical bundle inherits its manifold structure from R2N ,
we want to add a special atlas of charts in order to show a structure
of affine manifold which is of interest. In particular, the atlas
produces the exponential form of the positive densities that comes
from Statistical Physics.

• The exponential atlas of the statistical bundle S E (µ) is the
collection of charts given for each P ∈ E (µ) by

σP : S E (µ) 3 (Q,V ) 7→ (sP(Q), eUP
QV ) ∈ SP E (µ)× SP E (µ) ,

where

sP(Q) = log
Q

P
− EP

[
log

Q

P

]
, eUP

QV = V − EP [V ] .



Exponential form, divergence

• If sP(Q) = U, the exponential form of Q as a density with respect
to P is

Q = eU−EP [log Q
P ] · P .

• In the statistical language, log Q
P is the sample information of Q

with respect to P, EP

[
log Q

P

]
is the P-mean value of the

information, sP(Q) is the available relative information.

• In the language of Physics, − log Q
P = log P

Q is proportional to the
Boltzmann entropy of Q with respect to P, and

EP

[
− log Q

P

]
= EP

[
log P

Q

]
= D (P ‖Q). is proportional to the

P-mean value of the Boltzmann entropy, and
−sP(Q) = D (P ‖Q) + log P

Q .

• We could represent each Q as eV+ψP (Q)Ṗ with (Q,V ) ∈ S E (µ). In
such a case ψP(Q) = EQ

[
log Q

P

]
= D (Q ‖P). It follows the

conjugation relation

D (P ‖Q) + D (Q ‖P) = EP [V ] = EQ [U] .



Patches
• Let us compute the inverse of Q 7→ sP(Q) = U. We have

EP

[
eU
]

= exp
(
−EP

[
log Q

P

])
, and

s−1
P (U) = eU−KP (U) · P , KP(U) = logEP

[
eU
]
.

• The patch centered at P is

σ−1
P = εP : (SP E (µ))2 3 (U,W ) 7→ (eP(U), eUeP (U)

P W ) ∈ S E (µ) ,

with eP = s−1
P .

• The transition maps of the exponential atlas are

σP2 ◦ εP1 (U,W ) =

σP2

(
eU−KP1

(U) · P1,W − EeP1
(U) [W ]

)
=(

U − KP1 (U) + log
P1

P2
− EP2

[
U − KP1 (U) + log

P1

P2

]
,

W − EeP1
(U) [W ]− EP2

[
W − EeP1

(U) [W ]
])

=(
eUP2

P1
U + sP2 (P1), eUP2

P1
W
)
,

so that the exponential atlas is indeed affine.



Velocity and score
• Given a curve t 7→ Q(t) ∈ E (µ), the expression in the chart sP has

derivative

d

dt
sP(Q(t)) =

d

dt

(
log

Q(t)

P
− EP

[
log

Q(t)

P

])
=

Q̇(t)

Q(t)
−EP

[
Q̇(t)

Q(t)

]
.

• We define the Fisher score
?

Q(t) = Q̇(t)
Q(t) . It is the velocity expressed

in the moving frame, that is

?

Q(t) = eUQ(t)
P

d

dt
sP(Q(t)) .

• Every scalar of the exponential manifold φ : E (µ)→ R is expressed
in the chart at P by φP = φ ◦ ep.

• The natural gradient is the section gradφ such that

d

dt
φ(Q(t)) =

〈
gradφ(Q(t)),

?

Q(t)
〉
Q(t)

.

• In fact, if φ : RN , then gradφ(Q) = ∇φ(Q)− EQ [∇φ].



Hessian manifold

• The base manifold E (µ) is actually an Hessian manifold with respect
to any of the convex functions Kp(U) = logEp

[
eU
]
, U ∈ Sp E (µ).

• Many computations are actually performed using the Hessian
structure e.g.,

EeP (U) [H] = dKP(U)[H] ;

eUeP (U)
P H = H − dKP(U)[H] ;

d2KP(U)[H1,H2] =
〈

eUeP (U)
P H1,

eUeP (U)
P H2

〉
eP (U)

;

d3KP(U)[H1,H2,H3] = EeP (U)

[(
eUeP (U)

P H1

)(
eUeP (U)

P H2

)(
eUeP (U)

P H3

)]
.



Transports
• The mapping

eUQ
P : SP E (µ) 3 V 7→ V − EQ [V ] ∈ SQ E (µ)

is the exponential transport between the fibers.

• Given V ∈ SP E (µ) and W ∈ SQ E (µ),〈
eUQ

PV ,W
〉
Q

= EQ [(V − EQ [V ])W ] =

EQ [VW ] = EP

[
V

(
Q

P
W

)]
=
〈
V ,mUP

QW
〉
P
,

where
mUP

Q : SQ E (µ) 3W 7→ Q

P
W ∈ SP E (µ)

is the mixture transport.

• If V ,W ∈ SQ E (µ), with expression at P given by VP and WP ,

〈V ,W 〉Q =
〈

eUQ
PVP ,

eUQ
PWP

〉
Q

=
〈

mUP
Q

eUQ
PVP ,WP

〉
P

i.e., the self-adjoint operator
(

mUP
Q

eUQ
P

)
on S E (µ) is the

expression of the Riemannian metric in the chart at P.



Gradient flow of the entropy I

• Consider the scalar field

Q 7→ H (Q) = −EQ [logQ]

along the curve

t 7→ Q(t) = eP(V (t)) = eV (t)−KP (V (t)) · P .

• We have

H (Q(t)) = −EQ(t) [V (t)− KP(V (t)) + logP] =

KP(V (t))− EQ(t) [V (t) + logP +H (P)] +H (P) =

KP(V (t))− dKP(V (t))[V (t) + logP +H (P)] +H (P)



Gradient flow of the entropy II

• The derivative of the entropy along the given curve is

d

dt
H (Q(t)) =

d

dt
KP(V (t))− d

dt
dKP(V (t))[V (t) + logP +H (P)] =

− d2KP(V (t))[V (t) + logP +H (P) , V̇ (t)] =

− EQ(t)

[
eUQ(t)

P (V (t) + logP +H (P)) eUQ(t)
P V̇ (t)

]
• We rewrite as

d

dt
H (Q(t)) = −

〈
logQ(t) +H (Q(t)) ,

?

Q(t)
〉
Q(t)

so that natural gradient of the entropy is

•
gradH (Q) = −(logQ +H (Q))



Gradient flow of the entropy III

• The natural gradient flow is

?

Q(t) = −(logQ(t) +H (Q(t))) .

• The solution from Q is Q(t) ∝ Qe−t

:

Q(t) =
Qe−t

Eµ
[
Qe−t

] ;

logQ(t) = e−t logQ − logEµ
[
Qe−t

]
;

H (Q(t)) = −e−t EQ(t) [logQ] + logEµ
[
Qe−t

]
;

?

Q(t) =
d

dt
logQ(t) = −e−t logQ + e−t EQ(t) [logQ] .



e-acceleration

• For each curve t 7→ γ(t) = (Q(t),W (t)) in the statistical bundle,
define its velocity at t to be

?
γ(t) =

(
Q(t),W (t),

?

Q(t), Ẇ (t)− EQ(t)

[
Ẇ (t)

])
,

• In particular, the velocity of t 7→ χ(t) = (Q(t),
?

Q(t)) is

?
χ(t) =

(
Q(t),

?

Q(t),
?

Q(t),
∗∗
Q(t)

)
,

where the acceleration
∗∗
Q(t) is

∗∗
Q(t) =

d

dt

Q̇(t)

Q(t)
−EQ(t)

[
d

dt

Q̇(t)

Q(t)

]
=

Q̈(t)

Q(t)
−
(

?

Q(t)2 − EQ(t)

[
?

Q(t)2
])

• The acceleration of t 7→ etU−ψ(t) is zero.



m-acceleration, 0-acceleration

• We could consider an exponential acceleration eD2Q(t) =
∗∗
Q(t), a

mixture acceleration mD2Q(t) = Q̈(t)/Q(t), and a 0-acceleration

0D2Q(t) =
1

2

(
eD2Q(t) + mD2Q(t)

)
• The mixture acceleration of t 7→ (1− t)P + tQ is zero.

• The Boltzmann-Gibbs density

Q(θ) = Ne−(1/θ)H/Z (θ), . θ > 0

has velocity
?

Q(θ) = θ−2(H − Eθ [H]) and acceleration is

∗∗
Q(θ) = −2θ−3(H − Eθ [H]) = −2θ−1

?

Q(θ)



Levi-Civita covariant derivative
• Let U,Y ,W be section of the statistical bundle and

?

Q(t) = Y (Q(t)). Then

d

dt
〈U(Q(t)),W (Q(t))〉Q(t)

∣∣∣∣
t=0

= d3KQ(0)[U(Q),Y (Q),Z (Q)]+

d2KQ(0) [(eDYU)(Q),W (Q)] + d2KQ(0) [U(Q), (eDYW )(Q)] =

EQ [U(Q)Y (Q)W (Q)]+〈(eDYU)(Q),W (Q)〉Q+〈U(Q), (eDYW )(Q)〉Q
• It follows that the covariant derivative

DYU(Q) = eDYU(Q) +
1

2
(U(Q)Y (Q)− EQ [U(Q)Y (Q)])

is compatible with the metric

• Moreover

DVU − DUV = eDVU − eDVU = [U,V ]

• DVU is the Levi-Civita covariant derivative and, with
V (Q(t)) = U(Q(t)) =

?

Q(t), we find

∗∗
Q(t) +

1

2
(

?

Q(t)2 − EQ(t)

[
?

Q(t)2
]

= 0D2Q(t) .



Lagrangian function

• A Lagrangian function is a smooth scalar field on the statistical
bundle

L : S E (µ) 3 (Q,W ) 7→ L(Q,W ) ∈ R . (2)

• If t 7→ (Q(t),W (t)) is a smooth curve in S E (µ), then

d

dt
L(Q(t),W (t)) = d1L(Q(t),W (t))[

?

Q(t)]+d2L(Q(t),W (t))[
?

W (t)]

where d2 is the fiber derivative and

d1(Q,W )[H1] = d1LP(U,V )[eUP
eP (U)H1] , H1 ∈ SQ E (µ)

• In particular

d

dt
L(Q(t),

?

Q(t)) = d1L(Q(t),
?

Q(t))[
?

Q(t)] + d2L(Q(t),
?

Q(t))[
∗∗
Q(t)]



Euler-Lagrange equation

• At a critical point of the action integral, we can derive the
Euler-Lagrange equations

d1L(Q(t),
?

Q(t))[H]− d

dt
d2L(Q(t),

?

Q(t))[H] = 0, H ∈ SQ(t) E (µ)

• For example,

L(Q,W ) =
1

2
〈W ,W 〉Q + κH (Q) , κ ≥ o

has Euler-Lagrange equations

∗∗
Q(t) +

(
?

Q(t)2 − EQ(t)

[
?

Q(t)2
])

=

1

2

(
?

Q(t)2 − EQ(t)

[
?

Q(t)2
])
− κ(log (Q(t)) +H (Q(t)))

that is
0D2Q(t) = κ gradH (Q(t))



PART II

Information Geometry of the
Gaussian space

• G. Pistone. Examples of the application of nonparametric information geometry to statistical physics.
Entropy, 15(10):4042–4065, 2013

• B. Lods and G. Pistone. Information geometry formalism for the spatially homogeneous Boltzmann
equation. Entropy, 17(6):4323–4363, 2015

• D. Brigo and G. Pistone. Optimal approximations of the Fokker-Planck-Kolmogorov equation: projection,
maximum likelihood eigenfunctions and Galerkin methods. arXiv:1603.04348, 2016

• D. Brigo and G. Pistone. Projection based dimensionality reduction for measure valued evolution equations
in statistical manifolds. In F. Nielsen, F. Critchley, and C. Dodson, editors, Computational Information
Geometry. For Image and Signal Processing, Signals and Communication Technology, pages 217–265.
Springer, 2017

• G. Pistone. Information geometry of the Gaussian space. arXiv:1803.08135, 2018



Gaussian space
• We consider E (M) with

M(x) =
1

(2π)n/2
exp

(
−|x |

2

2

)
, x ∈ Rn

• For a convex Φ, the Orlicz space LΦ(M) is the vector space of all
random variables U such that EM [Φ(αU)] is finite for some α > 0.

• The Orlicz spaces of interest are denoted L(cosh−1) (M) and
L(cosh−1)∗ (M), with conjugate Young functions

(cosh−1)(x) = cosh x − 1,

(cosh−1)∗(y) = y log
(
y +

√
1 + y2

)
−
√

1 + y2 − 1,

• The set {
u ∈ LΦ(p)

∣∣Ep [Φ(u)] ≤ 1
}

is the closed unit ball of a Banach space, hence

‖u‖p = inf

{
ρ > 0

∣∣∣∣Ep

[
Φ

(
u

ρ

)]
≤ 1

}
.

• J. Musielak. Orlicz spaces and modular spaces, volume 1034 of Lecture Notes in Mathematics.
Springer-Verlag, 1983



Model space

• U ∈ L(cosh−1) (p) if, and only if, the moment generating function
α 7→ Ep [eαu] is finite in a neighborhood of 0.

• LΦ(p) is the space of sufficient statistics in an exponential family.

• The space L(cosh−1)∗ (M) is separable with dual space L(cosh−1) (M)
because

(cosh−1)∗(ay) =

∫ ay

0

ay − t√
1 + t2

dt ≤ max(|a| , a2)(cosh−1)∗(y).

• A positive density f has finite entropy if, and only if,
f ∈ L(cosh−1)∗ (M).



Maximal exponential family

• For each p ∈ P>, the moment generating functional is the positive
lower-semi-continuous convex function Gp : Bp 3 U 7→ Ep

[
eU
]

and

• the cumulant generating functional is the non-negative lower
semi-continuous convex function Kp = logGp.

• The interior of the common proper domain

{U|Gp(U) < +∞}◦ = {U|Kp(U) <∞}◦

is an open convex set Sp containing the open unit ball (for the norm
of the Orlicz space).

• For each p ∈ P>, the maximal exponential family at p is

E (p) =
{
eu−Kp(u) · p

∣∣∣u ∈ Sp} .



Isomorphism of LΦ spaces

• For positive densities p, q, the condition∫
p1−θ(x)qθ(x)M(x)dx <∞ on an open neighborhood of [0, 1] is

an equivalence relation p ^ q.

• The following statements are equivalent

• q ∈ E (p);
• p ^ q;
• E (p) = E (q);
• LΦ(p) = LΦ(q);

• log
(

q
p

)
∈ LΦ(p) ∩ LΦ(q).

• q
p ∈ L1+ε(p) and p

q ∈ L1+ε(q) for some ε > 0.

• G. Pistone and C. Sempi. An infinite-dimensional geometric structure on the space of all the probability
measures equivalent to a given one. Ann. Statist., 23(5):1543–1561, October 1995

• A. Cena. Geometric structures on the non-parametric statistical manifold, 2002

• A. Cena and G. Pistone. Exponential statistical manifold. Ann. Inst. Statist. Math., 59(1):27–56, 2007

• M. Santacroce, P. Siri, and B. Trivellato. New results on mixture and exponential models by Orlicz spaces.
Bernoulli, 22(3):1431–1447, 2016



Transports
• As all the spaces L(cosh−1) (p) are isomorphic to L(cosh−1) (M), for

all p ∈ E (M), the fibers

Bp =
{
u ∈ L(cosh−1) (p)

∣∣∣Ep [V ] = 0
}

are sub-spaces of L(cosh−1) (M).

• The exponential transports are defined by

eUq
p : Bp → Bq u 7→ u − Eq [u]

• Each of the spaces

∗Bp =
{
u ∈ L(cosh−1)∗ (p)

∣∣∣Ep [V ] = 0
}

is the pre-dual of Bp.

• The mixture transports are defined by

mUp
q : ∗Bq → ∗Bp v 7→ q

p
v

• For all v ∈ ∗Bq and u ∈ Bp it holds〈
v , eUq

pu
〉
q

=
〈

mUp
qv , u

〉
p



Random variables in L(cosh−1) (M) and L(cosh−1)∗ (M)

• The general inclusions hold, if 1 < a <∞,

L∞(M) ⊂ L(cosh−1) (M) ⊂ La(M) ⊂ L(cosh−1)∗ (M) ⊂ L1(M)

• Local inclusion holds, if 1 ≤ a <∞, ΩR = {x ∈ Rn||x | < R},

L(cosh−1) (M) ⊂ La(ΩR)

• The Orlicz space L(cosh−1) (M) contains all polynomials with degree
up to 2 and all functions which are bounded by such a polynomial.

• The Orlicz space L(cosh−1)∗ (M) contains all random variables
f : Rd → R which are bounded by a polynomial.



Statistical exponential manifold and bundles
• The exponential manifold is the maximal exponential family E (M)

with the affine atlas of global charts (sp : p ∈ E (M)),

sp(q) = log
q

p
− Ep

[
log

q

p

]
.

• The statistical exponential bundle S E (M) is the manifold defined
on the set{

(p,V )
∣∣∣p ∈ E (M) ,V ∈ L(cosh−1) (M) ,Ep [V ] = 0

}
by the affine atlas of global charts

σp : (q,V ) 7→
(
sp(q), eUp

qV
)
, p ∈ E

• The statistical pre-dual bundle ∗S E is the manifold defined on the
set

{(p,W )|p ∈ E ,W ∈ ∗Bp}
by the affine atlas of global charts

∗σp : (q,W ) 7→
(
sp(q),mUp

qW
)
∈ Bp × ∗Bp, p ∈ E



Space derivatives

In the continuous case we want to discuss the action of translations and
diffeomorphisms on densities, and differentiable densities.

• The 1-d Poincaré inequality is∫ (
f (x)−

∫
f (y)M(y) dy

)2

M(x) dx ≤
∫
|f ′(x)|2M(x) dx .

• In our case we have

|CovM (f , g)| ≤ const× ‖∇f ‖L(cosh −1)∗ (M) ‖∇g‖L(cosh −1)(M) .

• For example, f gn, g is a sequence on differentiable densities in
E (M), limn→∞∇gn = ∇g in L(cosh−1)∗ (M), and u ∈ S1 E (M),
with ∇u ∈ L(cosh−1) (M), then

lim
n→∞

∫
gn(x)u(x)M(x) dx =

∫
g(x)u(x)M(x) dx



Orlicz-Sobolev space with Gaussian weight

• The Orlicz-Sobolev spaces with Gaussian weight M are the vector
spaces W 1

cosh−1(M), respectively W 1
(cosh−1)∗

(M), defined by{
f ∈ L(cosh−1) (M)

∣∣∣∂j f ∈ L(cosh−1) (M) , j = 1, . . . , n
}

{
f ∈ L(cosh−1)∗ (M)

∣∣∣∂j f ∈ L(cosh−1)∗ (M) , j = 1, . . . , n
}

where ∂j is the derivative in the sense of distributions.

• Both are Banach spaces with the norm of the graph

‖f ‖W 1
(cosh −1)

(M) = ‖f ‖L(cosh −1)(M) +
n∑

j=1

‖∂j f ‖L(cosh −1)(M)

‖f ‖W 1
(cosh −1)∗

(M) = ‖f ‖L(cosh −1)(M) +
n∑

j=1

‖∂j f ‖L(cosh −1)(M)



Embeddings

Let R > 0 and let ΩR denote the open sphere of radius R.

• We have the continuous mappings

W 1,(cosh−1) (Rn) ⊂W 1,(cosh−1) (M)→W 1,p(ΩR), p ≥ 1.

• We have the continuous mappings for p > 1

W 1,p(Rn) ⊂W 1,(cosh−1)∗ (Rn) ⊂W 1,(cosh−1)∗ (M)→W 1,1(ΩR)

• Each u ∈W 1,(cosh−1) (M) is a.s. Hölder of all orders on each ΩR

and hence a.s. continuous.

• The restriction W 1,(cosh−1) (M)→ C (ΩR) is compact.



Exponential family modeled on W 1
(cosh−1)(M)

• If we restrict the exponential family E (M) to W 1
cosh−1(M),

WM = W 1
cosh−1(M) ∩ BM =

{
U ∈W 1

cosh−1(M)
∣∣EM [U] = 0

}
we obtain the following non parametric exponential family

E1(M) =
{
eU−KM (U) ·M

∣∣∣U ∈W 1
cosh−1(M) ∩ SM

}
• Because of W 1

cosh−1(M) ↪→ Lcosh−1(M) the set W 1
cosh−1(M) ∩ SM

is open in WM and the cumulant functional
KM : W 1

cosh−1(M) ∩ SM → R is convex and differentiable.

• Every feature of the exponential manifold carries over to this case.
In particular, we can define the spaces

Wf = W 1
cosh−1(M)∩BM =

{
U ∈W 1

cosh−1(M)
∣∣Ef [U] = 0

}
, f ∈ E1(M)

to be models for the tangent spaces of E1(M). The e-transport acts
on these spaces

0Ug
f : Wf 3 U 7→ U − Eg [U] ∈Wg ,

so that we can define the statistical bundle to be

S E1(M) = {(g ,V )|g ∈ E1(M),V ∈Wf }
and take as charts the restrictions of the charts defined on S E (M).



Example: Hyvärinen divergence

• For each f , g ∈ E1(M) the Hyvärinen divergence is

DH (g |f ) = Eg

[
|∇ log f −∇ log g |2

]
.

• The expression in the chart centered at M is

DHM(v‖u) := DH (eM(v)|eM(u)) = EM

[
|∇u −∇v |2 ev−KM (v)

]
,

where f = eM(u), g = eM(v).



Elliptic operator
• Elliptic operator as a densely defined section of the statistical

bundle is

Ap(x) = p(x)−1
d∑

i,j=1

∂

∂xi

(
aij(x)

∂

∂xj
p(x)

)
, x ∈ Rd .

• The expression in the affine atlas is

U 7→ ÂM(U) = eU−KM (U)A(eU−KM (U) ·M) =

eU−KM (U)

eU−KM (U) ·M
A(eU−KM (U) ·M) = M−1L∗(eU−KM (U) ·M)

• Computation gives

M−1L∗(eU−KM (U) ·M) =

eU−KM (U)
d∑

i,j=1

∂

∂xi

[
aij(x)

(
∂

∂xj
U(x)− xj

)]
p(x)+

eU−KM (U)
d∑

i,j=1

aij(x)

(
∂

∂xi
U(x)− xi

)(
∂

∂xj
U(x)− xj

)
p(x).


