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Abstract
• We focus on a specific way to put a global differentiable structure on

positive densities of a measure space, namely the Banach manifold
modelled on Orlicz spaces introduced by Pistone and Sempi (1995).

• This framework is able to overcome the limitations of other approaches (such as the classical embedding a
density in the Hilbert sphere by its square root) which are due to the fact the relative interior of the
positive cone of square integrable functions is empty unless the sample space is finite. Recent research has
improved our structure so that the current version allows to construct with a minimum of technicalities a
differential structure which is able to support first and second order calculus and reduces to Amari’s
Information Geometry on parametric sub-models. While classical statistical applications can use
parameters, other applications, such as Stochastic Analysis, are intrinsically nonparametric, hence the
advantage of a way to avoid parameters. On the other side, this result is obtained at the cost of reducing
the set of densities available to essentially those which have a finite relative divergence from a given one.

• When [the] reference density is the Gaussian density we obtain a
special set-up that allows for space differentiability through the
introduction of Orlicz-Sobolev model spaces. . . .

• I plan to hint to a number of potential applications of such a
Calculus, e.g. Continuity Equation, Kolmogorov Forward Equation,
Hyvrinen Divergence, Gradient Flow, Wasserstein distance,
Continuous Martingale.

• I refer to recent joint work: with L. Malagò (2015); with B. Lods
(2015); with D. Brigo (2016).
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Why a nonparametric IG?
• Applications without natural parameters:

• Flows e.g. gradient flows on the probability simplex.
• Homogeneous Boltzmann equation

∂t f = Q(f , f );

• Divergences in Machine Learning e.g., Hyvärinen divergence

DH (p‖q) =

∫
|∇ log p(x)−∇ log q(x)|2 q(x) dx

• Evolution equation for densities e.g., heat equation

∂t f = ∆x f ;

• G. Pistone. Examples of the application of nonparametric information geometry to statistical physics.
Entropy, 15(10):4042–4065, 2013

• G. Pistone. Nonparametric information geometry. In F. Nielsen and F. Barbaresco, editors, Geometric
science of information, volume 8085 of Lecture Notes in Comput. Sci., pages 5–36. Springer, Heidelberg,
2013. First International Conference, GSI 2013 Paris, France, August 28-30, 2013 Proceedings

• B. Lods and G. Pistone. Information geometry formalism for the spatially homogeneous Boltzmann
equation. Entropy, 17(6):4323–4363, 2015

• D. Brigo and G. Pistone. Projection based dimensionality reduction for measure valued evolution equations
in statistical manifolds. arXiv:1601.04189 [math.PR], 2016



Why ”exponential family”?

• The cone of strictly positive unnormalized densities is an affine
space for the multiplication. The additive representation of this
affine geometry is the exponential family.

• H. Gzyl and L. Recht. A geometry on the space of probabilities. I. The finite dimensional case.
Rev. Mat. Iberoam., 22(2):545–558, 2006

• H. Gzyl and L. Recht. A geometry on the space of probabilities. II. Projective spaces and
exponential families. Rev. Mat. Iberoam., 22(3):833–849, 2006

• Previous work (and current work) on generalising exponential
families was focused on the generalisation of parameters to infinite
dimension. Our idea is to avoid parameters at all.

• Non-parametric = coordinate-free differential geometry exits, and it
is simpler than its version based on coordinates

• R. Abraham, J. E. Marsden, and T. Ratiu. Manifolds, tensor analysis, and applications, volume 75
of Applied Mathematical Sciences. Springer-Verlag, New York, second edition, 1988

• S. Lang. Differential and Riemannian manifolds, volume 160 of Graduate Texts in Mathematics.
Springer-Verlag, New York, third edition, 1995



MY THESIS: IG is the geometry of the statistical bundle

In Information Geometry we want to perform computations such as

d

dθ

∫
u(x)p(x ; θ) µ(dx) =

∫
u(x)

d

dθ
p(x ; θ) µ(dx) =∫

u(x)
d

dθ
log p(x ; θ) p(x ; θ) µ(dx) = Eθ

[
(u − Eθ [u])

(
d

dθ
log pθ

)]

• ∆ is the probability simplex on a given sample space (Ω,F).

• The statistical bundle of ∆ is

T∆ =
{

(π, u)
∣∣π ∈ ∆, u ∈ L2(π),Eπ [u] = 0

}
• We want the fibers L2

0(µ) to be isomorphic and express the tangent
space.

• P. Gibilisco and G. Pistone. Connections on non-parametric statistical manifolds by Orlicz space
geometry. IDAQP, 1(2):325–347, 1998

• This program is easily feasible if the sample space Ω is finite. If Ω is
not finite, we have a problem.



Model space
Orlicz Φ-space

If φ(y) = cosh y − 1, the Orlicz Φ-space LΦ(p) is the vector space of all
random variables U such that Ep [Φ(αU)] is finite for some α > 0.

Properties of the Φ-space

1. U ∈ LΦ(p) if, and only if, the moment generating function
α 7→ Ep [eαu] is finite in a neighbourhood of 0. LΦ(p) is the space
of sufficient statistics in an exponential family.

2. The set {
u ∈ LΦ(p)

∣∣Ep [Φ(u)] ≤ 1
}

is the closed unit ball of a Banach space, hence

‖u‖p = inf

{
ρ > 0

∣∣∣∣Ep

[
Φ

(
u

ρ

)]
≤ 1

}
.

3. limn→∞ un = 0 in LΦ(p) if and only if for all ε > 0

lim sup
n→∞

Ep

[
Φ(ε−1un)

]
≤ 1



Isomorphism of LΦ spaces

LΦ(p) = LΦ(q) as Banach spaces if θ 7→
∫
p1−θqθ dµ is finite on an

open neighbourhood I of [0, 1]. It is an equivalence relation p ^ q and
we denote by E(p) the class containing p.

Proof.
Assume u ∈ LΦ(p) and consider the convex
function C : (s, θ) 7→

∫
esup1−θqθ dµ. The

restriction s 7→ C (s, 0) =
∫
esup dµ is finite

on an open neighbourhood Jp of 0; the
restriction θ 7→ C (0, θ) =

∫
p1−θqθ dµ is

finite on the open set I ⊃ [0, 1]. hence,
there exists an open interval Jq 3 0 where
s 7→ C (s, 1) =

∫
esuq dµ is finite.

●

●

J_p

J_q

I

• G. Pistone and C. Sempi. An infinite-dimensional geometric structure on the space of all the probability
measures equivalent to a given one. Ann. Statist., 23(5):1543–1561, October 1995



Portmanteau theorem

The following statements are equivalent:

• q ∈ E (p);

• p ^ q;

• E (p) = E (q);

• LΦ(p) = LΦ(q);

• log
(

q
p

)
∈ LΦ(p) ∩ LΦ(q).

• q
p ∈ L1+ε(p) and p

q ∈ L1+ε(q) for some ε > 0.

• A. Cena. Geometric structures on the non-parametric statistical manifold. PhD thesis, Dottorato in
Matematica, Università di Milano, 2002

• A. Cena and G. Pistone. Exponential statistical manifold. Ann. Inst. Statist. Math., 59(1):27–56, 2007

• M. Santacroce, P. Siri, and B. Trivellato. New results on mixture and exponential models by Orlicz spaces.
Bernoulli, 2015. online first



Maximal exponential family

• For each p ∈ P>, the moment generating functional is the positive
lower-semi-continuous convex function Gp : Bp 3 U 7→ Ep

[
eU
]

and

• the cumulant generating functional is the non-negative lower
semicontinuous convex function Kp = logGp.

• The interior of the common proper domain
{U|Gp(U) < +∞}◦ = {U|Kp(U) <∞}◦ is an open convex set Sp
containing the open unit ball (for the norm of the Orlicz space).

• For each p ∈ P>, the maximal exponential family at p is

E (p) =
{
eu−Kp(u) · p

∣∣∣u ∈ Sp} .



e-charts

• For each p ∈ P>, p ∈ E , consider the chart sp : E → LΦ
0 (p) = Bp

sp : E 3 q 7→ log

(
q

p

)
+ D(p‖q) = log

(
q

p

)
− Ep

[
log

(
q

p

)]

• For U ∈ Bp let Kp(U) = log Ep

[
eU
]

the cumulant generating
function of U and let Sp the interior of the proper domain. Define

ep = s−1
p : Sp 3 U 7→ eU−Kp(U) · p

• {sp : E (p)|p ∈ P>} is an affine atlas on P> that defines the
exponential manifold.

• Each E (p) is a connected component.

• The information closure of any E (p) is P≥. The reverse information
closure of any E (p) is P>.

• D. Imparato and B. Trivellato. Geometry of extended exponential models. In Algebraic and geometric
methods in statistics, pages 307–326. Cambridge Univ. Press, Cambridge, 2010



Cumulant functional

• The r-divergence q 7→ D (p‖q) is represented in the chart centered
at p by D (p‖ep(U)) = Kp(U) = log Ep

[
eU
]
, where

q = ep(U) = eU−Kp(U) · p, u ∈ Bp.

• Kp : Bp → R≥ ∪ {+∞} is convex and its proper domain Dom (Kp)
contains the open unit ball of Bp.

• Kp is infinitely Gâteaux-differentiable on the interior Sp of its
proper domain and analytic on the unit ball of Bp.

• For all V ,V1,V2,V3 ∈ Bp the first derivatives are:

dKp(U)[V ] = Eq [V ]

d2 Kp(U)[V1,V2] = Covq (V1,V2)

d3 Kp(U)[V1,V2,V3] = Covq(V1,V2,V3)



Summary

p ^ q =⇒ E (p)
sp // Sp

sq◦s−1
p

��

I // Bp

d(sq◦s−1
p )

��

I // LΦ(p)

E (q) sq
// Sq

I
// Bq I

// LΦ(q)

• If p ^ q, then E (p) = E (q) and LΦ(p) = LΦ(q).

• Bp = LΦ
0 (p), Bq = LΦ

0 (q)

• Sp 6= Sq and sq ◦ s−1
p : Sp → Sq is affine

sq ◦ s−1
p (U) = U − Eq [U] + log

(
p

q

)
− Eq

[
log

(
p

q

)]
• The tangent application is d(sq ◦ s−1

p )(U)[V ] = V − Eq [V ] (does
not depend on p)



Duality

Young pair (N–function)

• φ−1 = φ∗,

• Φ(x) =
∫ |x|

0
φ(u) du

• Φ∗(y) =
∫ |y |

0
φ∗(v) dv

• |xy | ≤ Φ(x) + Φ∗(y) 0 1 2 3 4 5

0
50

10
0

15
0

v

ph
i

φ∗(u) φ(v) Φ∗(x) Φ(y)

log (1 + u) ev − 1 (1 + |x |) log (1 + |x |)− |x | e|y | − 1− |y |
sinh−1 u sinh v |x | sinh−1 |x | −

√
1 + x2 + 1 cosh y − 1

• LΦ∗(p)× LΦ(p) 3 (v , u) 7→ 〈u, v〉p = Ep [uv ]

•
∣∣∣〈u, v〉p∣∣∣ ≤ 2 ‖u‖Φ∗,p

‖v‖Φ,p

• (LΦ∗(p))′ = LΦ(p) because Φ∗(ax) ≤ a2Φ∗(x) if a > 1 (∆2).



PART II

Second order geometry



Parallel transport

• e-transport:
eUq

p : Bp 3 U 7→ U − Eq [U] ∈ Bq .

• m-transport: for each V ∈ ∗Bq

mUp
q
∗Bq 3 V 7→ q

p
V ∈ ∗Bp

Properties

•
〈
U,mUp

qV
〉
p

=
〈

eUq
pU,V

〉
q

• eUr
q

eUq
p = eUr

p

• mUr
q

mUq
p = mUr

p

•
〈

eUq
pU,

mUq
pV
〉
q

= 〈U,V 〉p

• d2Kp(q)[U,V ] =
〈

eUq
pU,

eUq
pV
〉
q

=
〈

mUp
q

eUq
pU,V

〉
p
.



Statistical exponential manifold and bundles
• The exponential manifold is the maximal exponential family E with

the affine atlas of global charts (sp : p ∈ E),

sp(q) = log
q

p
− Ep

[
log

q

p

]
.

• The statistical exponential bundle S E is the manifold defined on the
set

{(p,V )|p ∈ E ,V ∈ Bp}

by the affine atlas of global charts

σp : (q,V ) 7→
(
sp(q), eUp

qV
)
∈ Bp × Bp, p ∈ E

• The statistical predual bundle ∗S E is the manifold defined on the
set

{(p,W )|p ∈ E ,W ∈ ∗Bp}

by the affine atlas of global charts

∗σp : (q,W ) 7→
(
sp(q),mUp

qW
)
∈ Bp × ∗Bp, p ∈ E



Score and statistical gradient

Definition
t 7→ p(t) is a curve in E (p) and f : E → R.

• The score of the curve t 7→ p(t) is a curve in the statistical bundle
t 7→ (p(t),Dp(t)) ∈ S E (p) such that for all X ∈ LΦ(p) it holds

d

dt
Ep(t) [X ] =

〈
X − Ep(t) [X ] ,Dp(t)

〉
p(t)

• Usually,

Dp(t) =
ṗ(t)

p(t)
=

d

dt
log p(t)

• The statistical gradient of f is a section of the statistical bundle,
p 7→ (p, grad f (p)) ∈ S E (p) such that for each regular curve
t 7→ p(t), it holds

d

dt
f (p(t)) = 〈grad f (p(t)),Dp(t)〉p(t)



Taylor formula in the Statistical Bundle

• For a curve t 7→ p(t) ∈ E connecting p = p(0) to q = p(1) and a
function f : E → R the Taylor formula is

f (q) = f (p) +
d

dt
f (p(t))

∣∣∣∣
t=o

+
1

2

d2

dt2
f (p(t))

∣∣∣∣
t=o

+ R2(f , p, q)

• The first derivative is computed with the statistical gradient and the
score

f (q) = f (p) + 〈grad f (p(0)),Dp(0)〉p +

1

2

d

dt
〈grad f (p(t)),Dp(t)〉p(t)

∣∣∣∣
t=o

+ R2(f , p, q)



Accellerations

• Let us define the acceleration at t of a curve t 7→ p(t) ∈ E . The
velocity is defined to be
t 7→ (p(t),Dp(t)) =

(
p(t), d

dt log (p(t))
)
∈ S E

• The exponential acceleration is

eD2p(t) =
d

ds
eUp(t)

p(s)Dp(s)

∣∣∣∣
s=t

• The mixture acceleration is

mD2p(t) =
d

ds
mUp(t)

p(s)Dp(s)
∣∣∣
s=t

• The e-accelleration of a 1d-exponential family is zero

• The m-accelleration of a 1d-mixture family is zero



Taylor’s formulæ I

1. t 7→ p(t) is the mixture geodesic connecting p = p(0) to q = p(1).

f (q) = f (p) + 〈grad f (p),Dp(0)〉p +

1

2

〈
eHessDp(0)f (p),Dp(0)

〉
p

+ R+
2 (p, q)

R+
2 (p, q) =∫ 1

0

dt
(

(1− t)
〈
eHessDp(t)f (p(t)),Dp(t)

〉
p(t)

)
−

1

2

〈
eHessDp(0)f (p),Dp(0)

〉
p



Taylor’s formulæ II

2. t 7→ p(t) is the exponential geodesic connecting p = p(0) to
q = p(1).

f (q) = f (p) + 〈grad f (p),Dp(0)〉p +

1

2

〈
mHessDp(0)f (p),Dp(0)

〉
p

+ R−2 (p, q)

R−2 (p, q) =∫ 1

0

dt
(

(1− t)
〈
mHessDp(t)f (p(t)),Dp(t)

〉
p(t)

)
−

1

2

〈
mHessDp(0)f (p),Dp(0)

〉
p



PART III

Information Geometry of the
Gaussian space

• B. Lods and G. Pistone. Information geometry formalism for
the spatially homogeneous Boltzmann equation. Entropy,
17(6):4323–4363, 2015

• Unpublished paper in progress (2016)



Gaussian space

• We consider E (M) with

M(x) =
1

(2π)n/2
exp

(
−|x |

2

2

)
, x ∈ Rn

• The spaces are denoted L(cosh−1) (M) and L(cosh−1)∗ (M) with
conjugate Young functions

(cosh−1)(x) = cosh x − 1,

(cosh−1)∗(y) = y log
(
y +

√
1 + y2

)
−
√

1 + y2 − 1,

• The space L(cosh−1)∗ (M) is separable with dual space L(cosh−1) (M)
because

(cosh−1)∗(ay) =

∫ ay

0

ay − t√
1 + t2

dt ≤ max(1, a2)(cosh−1)∗(y).



Notable functions in L(cosh−1) (M) and L(cosh−1)∗ (M)

• The general inclusions hold, if 1 < a <∞,

L∞(M) ⊂ L(cosh−1) (M) ⊂ La(M) ⊂ L(cosh−1)∗ (M) ⊂ L1(M)

• Local inclusion holds, if 1 ≤ a <∞, ΩR = {x ∈ Rn||x | < R},

L(cosh−1) (M) ⊂ La(ΩR)

• The Orlicz space L(cosh−1) (M) contains all polynomials with degree
up to 2 and all functions which are bounded by such a polynomial.

• The Orlicz space L(cosh−1)∗ (M) contains all random variables
f : Rd → R which are bounded by a polynomial, in particular, all
polynomials.

• As logM ∈ L(cosh−1) (M) and p ∈ E (M) then log p ∈ L(cosh−1) (M),
hence log p ∈ L(cosh−1) (q) for all q ∈ E (M). The entropy function
H : E (M) 3 p 7→ −Ep [log p] is diffentiable with statistical gradient
gradH(p) = − log p + H(p). The gradien flow trajectories are Gibbs
models.



C∞c (Rn) is boudedly a.s. dense

• For each f ∈ L(cosh−1)∗ (M) there exist a nonnegative function
h ∈ L(cosh−1)∗ (M) and a sequence fn ∈ Cc(Rn) (respectively
C∞c (Rn)) with |fn| ≤ h, n = 1, 2, . . . , such that limn→∞ fn = f a.s.

• For each f ∈ L(cosh−1) (M) there exist a nonnegative function
h ∈ L(cosh−1) (M) and a sequence fn ∈ Cc(Rn) (respectively
C∞c (Rn)) with |fn| ≤ h, n = 1, 2, . . . , such that limn→∞ fn = f a.s.

• C∞c (R) is dense in L(cosh−1)∗ (M) and it is weakly∗-dense in
L(cosh−1) (M).

Proof
Let L be a maximal subset of L(cosh−1)∗ (M), respectively L(cosh−1) (M),
such that the property is true. L is a vector space, contains the constant
functions, is closed for ∧, contains Cc(Rn). By the monotone class
theorem, L contains all measurable functions that are bounded by an
element of L(cosh−1)∗ (M), respectively L(cosh−1) (M).



Remarks

• If f ∈ L(cosh−1)∗ (M) and g ∈ L(cosh−1) (M) there exists
sequences fn, gn ∈ C∞c (Rn), n = 1, 2, . . . , such that
fngn → uv in L1(M)

• If f , h ∈ L(cosh−1) (M) and C∞c (Rn) with |fn| ≤ h,
n = 1, 2, . . . , and limn→∞ fn = f a.s., then
efn ∈ C∞(Rn) ∩ L(cosh−1)∗ (M) and limn→∞ efn = f a.s.

• Let 1 ≤ a <∞. The mapping g 7→ gM
1
a is an isometry of

La(M) onto La(Rn). As a consequence, for each f ∈ L1(Rn)
and each g ∈ La(M) we have∥∥∥[f ∗ (gM

1
a )
]
M−

1
a

∥∥∥
La(M)

≤ ‖f ‖L1(Rn) ‖g‖La(M).

• The mapping g 7→ sign (g) (cosh−1)−1
∗ (M(cosh−1)∗(g)) is a

surjection of L(cosh−1)∗ (Rn) onto L(cosh−1)∗ (M) with inverse
h 7→ sign (h) (cosh−1)−1

∗ (M−1(cosh−1)∗(f )). It is surjective
from unit vectors (for the Luxenbourg norm) onto unit vectors.



Orlicz-Sobolev with weight

• The O-S spaces with weight M are the vector spaces

W 1
cosh−1(M) =

{
f ∈ L(cosh−1) (M)

∣∣∣∂j f ∈ L(cosh−1) (M) , j = 1, . . . , n
}

W 1
(cosh−1)∗

(M) =
{
f ∈ L(cosh−1)∗ (M)

∣∣∣∂j f ∈ L(cosh−1)∗ (M) , j = 1, . . . , n
}

where ∂j is the derivative in the sense of distributions.

• Both are Banach spaces with the norm of the graph

‖f ‖W 1
(cosh−1)

(M) = ‖f ‖L(cosh−1)(M) +
n∑

j=1

‖∂j f ‖L(cosh−1)(M)

‖f ‖W 1
(cosh−1)∗

(M) = ‖f ‖L(cosh−1)(M) +
n∑

j=1

‖∂j f ‖L(cosh−1)(M)

• J. Musielak. Orlicz spaces and modular spaces, volume 1034 of Lecture Notes in Mathematics.
Springer-Verlag, Berlin, 1983, §10



Remarks

• As φ ∈ C∞c (Rn) implies φM ∈ C∞c (Rn), for each
f ∈W 1

(cosh−1)∗(M) we have

〈∂j f , φ〉M = 〈∂j f , φM〉 = −〈f ,M∂jφ− XjMφ〉 =

〈f ,M(Xj − ∂j)φ〉 = 〈f , (Xj − ∂j)φ〉M .

We want the operator δj = Xj − ∂j exteded to L(cosh−1)∗ (M).

• W 1
(cosh−1)(M) ⊂W 1

(cosh−1)(ΩR) ⊂W 1,p(ΩR), p ≥ 1

• W 1
(cosh−1)∗

(M) ⊂W 1
(cosh−1)∗

(ΩR) ⊂W 1,1(ΩR).

• Each u ∈W 1
(cosh−1)(M) is a.s. continuous and Hölder of all orders

on each ΩR

• H. Brezis. Functional analysis, Sobolev spaces and partial differential equations. Universitext. Springer,
New York, 2011.



Compositions and operators
Differentiable densities

1. If u ∈ SM and f1, . . . , fm ∈ L(cosh−1) (M), then
f1 · · · fmeu−KM (u) ∈ L(cosh−1)∗ (M).

2. If u ∈ SM ∩W 1
(cosh−1)(M) and f ∈W 1

cosh−1(M), then

f eu−KM (u) ∈W 1
(cosh−1)∗

(M) ∩ C 1(Rn).

Proof.
The equality eu−KM (u) = ∂i (f e

u−KM (u)) in the sense of distributions is checked in pointwise approximation by
C∞c (Rn) functions.

The δj operator

• The injection W 1
(cosh−1)∗

(M) 3 f 7→ Xj f ∈ L(cosh−1)∗ (M), where Xj

is the multiplication operator by the j-th coordinate xj , is defined
and continuous.

• If f ∈W 1
(cosh−1)∗

(M) and g ∈W 1
cosh−1(M), then

〈f , ∂jg〉M = 〈Xj f − ∂j f , g〉M = 〈δj f , g〉M



Exponential family modeled on W 1
(cosh−1)(M)

• If we restrict the exponential family E (M) to W 1
cosh−1(M),

WM = W 1
cosh−1(M) ∩ BM =

{
U ∈W 1

cosh−1(M)
∣∣EM [U] = 0

}
we obtain the following non parametric exponential family

E1(M) =
{
eU−KM (U) ·M

∣∣∣U ∈W 1
cosh−1(M) ∩ SM

}
• Because of W 1

cosh−1(M) ↪→ Lcosh−1(M) the set W 1
cosh−1(M) ∩ SM

is open in WM and the cumulant functional
KM : W 1

cosh−1(M) ∩ SM → R is convex and differentiable.

• Every feature of the exponential manifold carries over to this case.
In particular, we can define the spaces

Wf = W 1
cosh−1(M)∩BM =

{
U ∈W 1

cosh−1(M)
∣∣Ef [U] = 0

}
, f ∈ E1(M)

to be models for the tangent spaces of E1(M). The e-transport acts
on these spaces

Ug
f : Wf 3 U 7→ U − Eg [U] ∈Wg ,

so that we can define the statistical bundle to be

S E1(M) = {(g ,V )|g ∈ E1(M),V ∈Wf }
and take as charts the restrictions of the charts defined on S E (M).



Application: Hyvärinen divergence

• For each f , g ∈ E1(M) the Hyvärinen divergence is

DH (g‖f ) = Eg

[
|∇ log f −∇ log g |2

]
.

• The expression in the chart centered at M is

DHM(v‖u) := DH (eM(v)‖eM(u)) = EM

[
|∇u −∇v |2 ev−KM (v)

]
,

where f = eM(u), g = eM(v).

• grad(f 7→ DH (g‖f )) = −2∇ log g ·∇ log f
g − 2∆ log f

g

• grad(g 7→ DH (f ‖g)) = 2∇ log g ·∇ log f
g + 2∆ log f

g + DH (f ‖g)



Elliptic operator (Brigo & Pistone 2016)
• Elliptic operator as section of the tangent bundle is

Ap(x) = p(x)−1
d∑

i,j=1

∂

∂xi

(
aij(x)

∂

∂xj
p(x)

)
, x ∈ Rd .

• The expression in the statistical bundle is

U 7→ ÂM(U) = eU−KM (U)A(eU−KM (U) ·M) =

eU−KM (U)

eU−KM (U) ·M
A(eU−KM (U) ·M) = M−1L∗(eU−KM (U) ·M)

• Computation gives

M−1L∗(eU−KM (U) ·M) =

eU−KM (U)
d∑

i,j=1

∂

∂xi

[
aij(x)

(
∂

∂xj
U(x)− xj

)]
p(x)+

eU−KM (U)
d∑

i,j=1

aij(x)

(
∂

∂xi
U(x)− xi

)(
∂

∂xj
U(x)− xj

)
p(x).


