PROBABILITY 2020 EXAM

INSTRUCTOR: GIOVANNI PISTONE

1. BERNOULLI PROBABILITY FUNCTION

Let X be a finite set, #X = n. We define a probability function on the finite set of parts $S = \mathcal{P}(X), \#S = 2^n$. If $s \in S$, that is, $s \subset X$, denote by the same letter both the set and its indicator function, s(x) = 1 if $x \in s, 0$ otherwise. One can check that for each $p \in]0, 1[$,

$$p(s) = \prod_{x \in X} p^{s(x)} (1-p)^{1-s(x)} = p^{\#s} (1-p)^{n-\#s} = (1-p)^n \left(\frac{p}{1-p}\right)^{\#s}$$

11 ...

is a probability function. It is the *Bernoulli* probability function.

For the corresponding probability measure it holds $\mathbb{P}_p(\#s=k) = \binom{n}{k}p^k(1-p)^{n-k}$. The equation $p(k) = \binom{n}{k}p^k(1-p)^{n-k}$ defines the *binomial* probability function on $\{0, 1, \ldots, n\}$. Let $X = X_1 \cup X_2$ be a partition of X. We have

$$\mathbb{P}_p\left(s: s \subset X_1\right) = \sum_{s \subset X_1} p^{\#s} (1-p)^{n-\#s} = \sum_{s \subset X_1} p^{\#s} (1-p)^{\#X_1-\#s} (1-p)^{\#X-\#X_1} = (1-p)^{\#X_2} .$$

For each $s \subset X$ define $s_1 = s \cap X_1$ and $s_2 = s \cap X_2$. Write $n_1 = \#X_1$, $n_2 = \#X_2$. The Bernoully probability function is decomposed as

$$p(s) = (1-p)^{n_1} \left(\frac{p}{1-p}\right)^{\#s_1} \times (1-p)^{n_2} \left(\frac{p}{1-p}\right)^{\#s_2} = p_1(s_1)p_2(s_2) .$$
[To be continued]

2. RANDOM GRAPH

Let V be a finite set of vertices, #V = v. The set of edges is the set of all 2-subsets of V. The usual notation is \mathcal{E} , but here we use $X = \binom{V}{2}$, $\#X = \binom{v}{2}$, for coherence with the previous section. A graph g is a set of edges. Let us consider the sample space of all graphs $G = \mathcal{P}(X)$, $\#G = 2^{\binom{v}{2}}$ and the Bernoully probability,

$$p(g) = (1-p)^{\binom{v}{2}} \left(\frac{p}{1-p}\right)^{\#g}$$
.

Date: February 16, 2020.

All graphs with the same number of edges have the same probability. Under this model, the probability that a graph has e edges, $0 \le e \le {\binom{v}{2}}$ is

$$\binom{\binom{v}{2}}{e}(1-p)^{\binom{v}{2}}\left(\frac{p}{1-p}\right)^e.$$

Let us decompose the vertex set into $V = V_1 \cup V_2$, $v = v_1 + v_2$. This produces a partition of the set of edges into 3 parts, $X = X_1 \cup X_2 \cup X_{12}$. X_1 are the edges in V_1 , X_2 are the edges in V_2 , X_{12} are the edges connecting V_1 and V_2 . Note that

$$\#X = \binom{v_1 + v_2}{2}, \#X_1 = \binom{v_1}{2}, \#X = \binom{v_2}{2}, \#X_{12} = v_1v_2 .$$

Every graph is decomposed as $g = g_1 \cup g_2 \cup g_{12}$ and

$$p(g) = p_1(g_1) \times p_2(g_2) \times (1-p)^{v_1 v_2} \left(\frac{p}{1-p}\right)^{\# g_{12}}$$

[To be continued]

3. Monotone classes

Act S be the sample space. A family \mathcal{M} of subsets of S is a monotone class if for all infinite sequence $(A_n)_{n\in\mathbb{N}}$ in \mathcal{M} , if the sequence is non-increasing $A_n \supset A_{n+1}$ then $\lim_{n\to\infty} A_n = \bigcap_n A_n \in \mathcal{M}$, and, if the sequence is non-decreasing $A_n \subset A_{n+1}$ then $\lim_{n\to\infty} A_n = \bigcup_n A_n \in \mathcal{M}$.

If \mathcal{B} is a field on S, then the σ -algebra generated by \mathcal{B} , $\sigma(\mathcal{B})$, coincides with the monotone class $m(\mathcal{B})$ generated by \mathcal{B}

• Consider the relation $\Phi(A, B)$ defined on the parts of S by

 $A \cup B, A \setminus B, B \setminus A \in m(\mathcal{B})$.

For all A, $\Phi(A)$ is a monotone class.

[To be continued]