Anomalous Statistics, Generalized Entropies, and Information Geometry March 6-10, 2012 Memorial Hall, Nara Women's University, Nara, Japan

Studies on deformed exponential families

Extended φ-exponential families
 Nonparametric φ-exponential families
 φ-exponential martingales

Giovanni Pistone

Collegio Carlo Alberto

Session 13 March 9 16:10-16:50

Introduction

Acknowledgments

• J. Naudts, Generalised Thermostatistics (Springer, 2011)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Deformed exponentials I

H1 The real function $\phi \colon \mathbb{R}_{>} \to \mathbb{R}_{>}$ is strictly positive, strictly increasing, continuous.

 ϕ -logarithm

$$\mathsf{ln}_{\phi}\left(extsf{v}
ight) =\int_{1}^{ extsf{v}}rac{dx}{\phi(x)},\quad extsf{v}\in\mathbb{R}_{>}.$$

Properties

$$\ln_{\phi} \colon \mathbb{R}_{>} \to \left] - \int_{0}^{1} \frac{dx}{\phi(x)}, \int_{1}^{+\infty} \frac{dx}{\phi(x)} \right[=] - m, + M[$$

is strictly increasing, strictly concave and twice differentiable.

 $\phi\text{-exponential}\,$ is the inverse function

$$\exp_{\phi} = \ln_{\phi}^{-1} :] - m, +M[\to \mathbb{R}_{>}.$$

Deformed exponentials II

Rate function The ϕ -exponential is the solution of the Chauchy problem

$$\begin{cases} y'(u) = \phi(y(u)) & , \\ y(0) = 1 \end{cases}$$

It is convenient to introduce the rate function

$$\gamma(u) = rac{d}{du} \log \left(\exp_{\phi} \left(u
ight)
ight) = rac{\phi(\exp_{\phi} \left(u
ight))}{\exp_{\phi} \left(u
ight)}$$

Derivatives

$$\begin{aligned} \exp_{\phi}{}'(u) &= \phi(\exp_{\phi}{}(u)) = \gamma(u) \exp_{\phi}{}(u) \,. \\ \exp_{\phi}{}''(u) &= \gamma'(u) \exp_{\phi}{}(u) + \gamma(u) \exp_{\phi}{}'(u) \\ &= (\gamma'(u) + \gamma^2(u)) \exp_{\phi}{}(u) \,. \\ \frac{\gamma'(u) + \gamma^2(u))}{\gamma(u)} &= \frac{\exp_{\phi}{}''(u)}{\exp_{\phi}{}'(u)} = \frac{d}{du} \log\left(\exp_{\phi}{}'(u)\right) \,. \end{aligned}$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ● ● ● ●

Deformed exponentials III

Self duality The deformed exponential is self-dual,

$$\exp_{\phi}\left(u
ight)\exp_{\phi}\left(-u
ight)=1,\quad \ln_{\phi}\left(v
ight)+\ln_{\phi}\left(rac{1}{v}
ight)=0,$$

if, and only if, the rate function γ is symmetric.

H2 We assume ϕ defined on \mathbb{R}_+ and

$$\phi(0)=0, \quad M=\int_1^{+\infty}\frac{dx}{\phi(x)}=+\infty.$$

Extension The extended \exp_{ϕ} is nonnegative, nondecreasing, convex, differentiable, with derivative $\exp_{\phi}'(u) = \phi(\exp_{\phi}(u))$. The rate function in not defined on $] - \infty, -m]$ because there $\exp_{\phi}(u) = 0$. However,

$$\exp_{\phi}'(u) = \gamma(u) \exp_{\phi}(u)$$

if γ is extended with arbitrary bounded values, for example 0, on $] - \infty, -m]$, $\exp_{\phi}'(u)(\exp_{\phi}(u))^+ = \gamma(u)$.

Part 1 Extended ϕ -exponential families

 G. Pistone, The European Physical Journal B Condensed Matter Physics 71(1), 29 (2009), ISSN 1434-6028, http://dx.medra.org/10.1140/epjb/e2009-00154-y

- L. Malagò, G. Pistone (2010), arXiv:1012.0637v1
- G. Pistone (2011), arXiv:1112.5123v1

Marginal polytope I

On the finite state space (X, μ) we consider the φ-exponential family

$$p_{\theta}(x) = \exp_{\phi}\left(\sum_{j=1}^{m} \theta_{j}H_{j}(x) - \alpha(\theta)\right)p(x), \quad \theta \in \mathbb{R}^{m}.$$

• The function $\alpha \colon \mathbb{R}^m \to \mathbb{R}$ is convex and

$$\alpha(\theta) = \sum_{j=1}^{m} \theta_j \mathsf{E}_{\rho} \left[\mathsf{H}_j \right] - \mathsf{E}_{\rho} \left[\mathsf{In}_{\phi} \left(\frac{p_{\theta}}{\rho} \right) \right]$$

• If the convex conjugate

$$\alpha^*(\eta) = \sup \left\{ \theta \cdot \eta - \alpha(\theta) \colon \theta \in \mathbb{R}^m \right\}$$

is a maximum value, then

$$\alpha^*(\eta) = \hat{\theta} \cdot \eta - \alpha(\hat{\theta}), \quad \eta = \nabla \alpha(\hat{\theta}).$$

Marginal polytope II

Definition

The marginal polytope of the ϕ -model (also called *convex support*) is the convex hull M of the set $\{H(x): x \in \mathcal{X}\} \subset R^m$, $H = (H_1, \ldots, H_m)$.

Example (No-3-way-interaction)

•
$$\mathcal{X} = \{+1, -1\}, \ \mu = \#, \ p(x) = 1.$$

$$\begin{aligned} & \ln_{\phi} \left(p_{\theta}(x) \right) = \\ & \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \theta_{12} x_1 x_2 + \theta_{13} x_1 x_3 + \theta_{23} x_2 x_3 - \alpha(\theta) \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• The marginal polytope is the convex subset of \mathbb{R}^6 with vertices $\{(x_1, x_2, x_3, x_1x_2, x_1x_3, x_2x_3): x_1, x_2, x_3 = \pm 1\}.$

• Facets of the marginal polytope can be computed.

Convex conjugate

Theorem

- 1. The convex conjugate $\alpha^* \colon \mathbb{R}^m \to \mathbb{R} \cup \{+\infty\}$ of α is finite exactly on the marginal polytope $M = \operatorname{co}(\operatorname{im} H)$.
- 2. The gradient mapping $\nabla \alpha \colon \mathbb{R}^m \to \mathbb{R}^m$ is onto the interior M° of the marginal polytope M.
- 3. α^* restricted to M° is the Legendre transform of α that is, $\alpha^*(\eta) = \theta \cdot \eta - \alpha(\theta)$ if $\eta = \nabla \alpha(\hat{\theta})$.

Proof.

See the ArXiv paper with the assumption $m = +\infty$. Cfr. Th. 3.6 of L.D. Brown, Fundamentals of statistical exponential families with applications in statistical decision theory, Number 9 in IMS Lecture Notes. Monograph Series (Institute of Mathematical Statistics, Hayward, CA, 1986), ISBN 0-940600-10-2.

Non parametric version I

Identification Two different sets of statistics H_j , j = 1, ..., m and H'_j , j = 1, ..., m' define the same statistical model if, and only if, the vector space generated by the centered random variables is the same,

$$\begin{aligned} \mathsf{Span}\left(H_{j}-\mathsf{E}_{p}\left[H_{j}\right], j=1,\ldots,m\right) = \\ \mathsf{Span}\left(H_{j}'-\mathsf{E}_{p}\left[H_{j}'\right], j=1,\ldots,m'\right). \end{aligned}$$

Non parametric Without reference to a vector basis nor to pameters, the ϕ -exponential model is the set of probability density function p_u of the form

$$p_u = \exp_{\phi} (u - K_{\rho}(u)) \rho, \quad u \in V,$$

where V is a linear sub-space of $L_0(p)$ and

$$\mathcal{K}_{\rho}(u) = \alpha(\theta) - \sum_{j=1}^{m} \theta_{j} \mathsf{E}_{\rho} [\mathcal{H}_{j}], \quad u = \sum_{j=1}^{m} \theta_{j} (\mathcal{H}_{j} - \mathsf{E}_{\rho} [\mathcal{H}_{j}])$$

Non parametric version II

Chart The random variable $u \in V$ is a unique parameterization of p_u as

$$u = \ln_{\phi} \left(\frac{q}{p}\right) - \mathsf{E}_{p} \left[\ln_{\phi} \left(\frac{q}{p}\right) \right]$$

Cumulant The quantity $K_p(u)$ is a divergence of p from p_u , as $K_p(0) = 0$ and, from

$$u - K_p(u) = \ln_\phi\left(\frac{q}{p}\right), \quad u \in L_0(p),$$

we have

$$\begin{split} \mathcal{K}_{p}(u) &= -\mathsf{E}_{p}\left[\mathsf{In}_{\phi}\left(\frac{p}{q}\right)\right] \\ &= \mathsf{E}_{p}\left[\mathsf{In}_{\tilde{\phi}}\left(\frac{p}{q}\right)\right], \quad \tilde{\phi}(x) = x^{2}\phi\left(\frac{1}{x}\right) \\ &> \mathsf{E}_{p}\left[\frac{q}{p}-1\right] = 0, \quad q \neq p \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Non parametric version III

 $D \ K_p(u) \ v$ The non parametric derivative of the mapping $L_0(p) \colon u \mapsto K_p(u)$ is the directional derivative in direction $v \in L_0(p)$. With the notation

$$\mathsf{D} K_{\rho}(u) v = \left. \frac{d}{dt} K_{\rho}(u+tv) \right|_{t=0},$$

one finds

$$\mathsf{E}_{\rho}\left[\phi\left(\frac{p_{u}}{p}\right)v\right] = \mathsf{E}_{\rho}\left[\phi\left(\frac{p_{u}}{p}\right)\right]\mathsf{D}\,\mathcal{K}_{\rho}\left(u\right)v.$$

Escort The escort mapping

$$\phi_{p} \colon q \mapsto \frac{\phi\left(\frac{q}{p}\right)}{\mathsf{E}_{p}\left[\phi\left(\frac{q}{p}\right)\right]}$$

is one-to-one and

$$\mathsf{D}\,\mathcal{K}_{p}\left(u\right)v = \mathsf{E}_{p}\left[\phi_{p}(p_{u})v\right]$$

Non parametric version IV

 $D^2 K_p(u) vw$ The second derivative of $u \mapsto \exp_{\phi} (u - K_p(u))$ in the directions v and w is the first derivative in the direction w of $u \mapsto \exp_{\phi}'(u - K_p(u))(v - DK_p(u)v)$, therefore

$$D^{2}K_{p}(u)vw =$$

$$E_{p}\left[\exp_{\phi}^{\prime\prime}(u-K_{p}(u))(v-DK_{p}(u)v)(w-DK_{p}(u)w)\right]$$

$$E_{p}\left[\exp_{\phi}^{\prime}(u-K_{p}(u))\right]$$

If $w = v \neq 0$, then $D^2 K_p(u) vv > 0$, therefore the functional K is strictly convex.

Conjugation The convex conjugate of $L_0(p): u \mapsto K_p(u)$, is defined in the duality $(u^*, u) \mapsto \mathsf{E}_p[u^*u]$ by

 $H_{\rho}(u^*) = \sup \{ \mathsf{E}_{\rho} [u^*u] - K_{\rho}(u) \colon u \in L_0(\rho) \}, \quad u^* \in L_0(\rho).$

Normal equations

If a maximum is reached at \hat{u} , then the directional derivative of

$$L_0(p)$$
: $u \mapsto \mathsf{E}_p[u^*u] - K_p(u)$

is zero in each direction v,

$$\mathsf{E}_{\rho}\left[u^*v\right] - \mathsf{E}_{\rho}\left[\phi_{\rho}(p_{\hat{u}})v\right] = 0, \quad v \in L_0(\rho).$$

Hence $u^* + 1 = \phi_{\rho} \left(p_{\hat{u}} \right)$, therefore

$$egin{aligned} \mathcal{H}_{p}(u^{*}) &= \mathsf{E}_{p}\left[u^{*}\hat{u}
ight] - \mathcal{K}_{p}(\hat{u}) \ &= \mathsf{E}_{p}\left[(1+u^{*})\hat{u}
ight] - \mathsf{E}_{p}\left[(1+u^{*})\mathcal{K}_{p}(\hat{u})
ight] \ &= \mathsf{E}_{p}\left[(1+u^{*})\ln_{\phi}\left(rac{p_{\hat{u}}}{p}
ight)
ight] \end{aligned}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Divergence and characterization

Theorem

- 1. The convex conjugate H_p of K_p is finite at u^* if, and only if, $q = (u^* + 1)p$ is a density, that is $E_p[u^*] = 0$, $u^* + 1 \ge 0$.
- 2. If q is a strictly positive density function and $u^* = \frac{q}{p} 1$, the normal equation is $1 + u^* = \frac{q}{p} = \phi_p(p_{\hat{u}})$, hence $\frac{p_{\hat{u}}}{p} = \phi_p^{-1}(q)$ and

$$egin{aligned} \mathcal{H}_p(q) &:= \mathcal{H}_p\left(rac{q}{p}-1
ight) \ &= \mathsf{E}_q\left[\mathsf{ln}_\phi\left(\phi_p^{-1}(q)
ight)
ight] \end{aligned}$$

If u₁,..., u_d are random variables in L₀(p) and p_θ is the associates φ-exponential family, define the escort model q_θ = φ_p(p_θ). Let q_θ be a model wich gives to each u_j the same expected value as q_θ. Then H_p(q_θ) ≤ H_p(q_θ).

Proof

- 1. Take a basis and apply the marginal polytope theorem.
- 2. If q is a strictly positive density function and $u^* = \frac{q}{p} 1$, the normal equation is $1 + u^* = \frac{q}{p} = \phi_p(p_{\hat{u}})$, hence $\frac{p_{\hat{u}}}{p} = \phi_p^{-1}(q)$ and use the normal equations to get

$$egin{aligned} \mathcal{H}_{p}(q) &:= \mathcal{H}_{p}(u^{*}) \ &= \mathsf{E}_{p}\left[rac{q}{p} \ln_{\phi}\left(\phi_{p}^{-1}(q)
ight)
ight] \ &= \mathsf{E}_{q}\left[\ln_{\phi}\left(\phi_{p}^{-1}(q)
ight)
ight]. \end{aligned}$$

3. Compare in the definition of conjugate the case with inequality with the case of equality.

(日) (四) (문) (문) (문)

! ϕ_p^{-1} is not of the same type as ϕ_p .

ŀ

Exposed subsets

Definition

• The *trace* on $S \subset \mathcal{X}$ of the ϕ -exponential family p_{θ} is the ϕ -exponential family

$$p_{|S,\theta}(x) = \exp_{\phi}\left(\sum_{j=1}^{m} \theta_j H_j(x) - \alpha_S(\theta)\right) p(x|S), \quad x \in S.$$

 A subset S ⊂ X is exposed if S = H⁻¹(F) and F is a face of the marginal polytope. Equivalently, there exists a non-negative random variable of the form α₀ + ∑^d_{j=1} α_jH_j whose support is S.

Note that the trace is not equal to the conditioning unless $\phi = 1$.

Extended family

Theorem

Let θ_n , n = 1, 2, ..., be a sequence of parameters such that for some non-negative probability density function q we have $\lim_{n\to\infty} p(x; \theta_n) = q(x)$.

- 1. If the support of q is full, $\{q > 0\} = \mathcal{X}$, then q belongs to the ϕ -exponential family for some parameter value θ .
- 2. If the support of q is defective, then the sequence θ_n is divergent, the support is an exposed subset of \mathcal{X} , and q belongs to the trace of the ϕ -exponential family on the support.
- 3. Viceversa, each trace on an exposed subset is a limit of elements of the family.

Definition

The extended ϕ -exponential model is the closure of the ϕ -exponential model. It is parameterized by the marginal polytope.

Part 2 Nonparametric ϕ -exponential families

- G. Pistone, C. Sempi, Ann. Statist. 23(5), 1543 (1995), ISSN 0090-5364
- R.F. Vigelis, C.C. Cavalcante, Journal of Theoretical Probability (2011), online First

$\phi\text{-exponential}$ manifold I

- On a *finite* state space $(\Omega, \mathcal{F}, \mu)$, the open convex set $\mathcal{M}_{>}$ of positive densities is an exponential model. The intrinsic geometry of the exponential structure induces the e-geometry on $\mathcal{M}_{>}$ in the form of a differentiable manifold modelled on \mathbb{R}^{d} , where $d + 1 = \#\Omega$.
- On a general state space (Ω, F, μ), the same idea works but one has to carefully select a model Banach space for the infinite dimensional manifold supported by M_>.
- One option is to fix a reference density *p* and consider the densities *q* of the form

$$q = e^{u - K_p(u)} \cdot p(x) = e^{u - K_p(u) + \ln p(x)}$$

where u is a random variable uniquely determined by the reference density p and by the condition $E_p[u] = 0$. The centered random variable u is the nonparametric coordinate of q in the reference p.

In the φ-exponential setting, we assume exp_φ to be defined on R, increasing and convex. There are two options.

ϕ -exponential manifold II

• At each *p* the model space is the Museliac-Orlicz space determined by the modular

$$v \mapsto \mathsf{E}_{\mu}\left[\exp_{\phi}\left(v + \ln_{\phi}\left(p\right)\right)\right].$$

- We define the tangent space T_p to be the set of such random variables which are centered with respect to the escort probability $\propto \phi(p)$.
- Consider the densities of the form

$$q = \exp_{\phi}\left(u - \mathcal{K}_{p}(u) + \ln_{\phi}\left(p
ight)
ight), \quad u \in \mathcal{T}_{p}, \quad \mathcal{K}_{p}(u) \in \mathbb{R}$$

• The coordinate *u* is uniquely determined because

$$u_1 - K_p(u_1) + \ln_{\phi}(p) = u_2 - K_p(u_2) + \ln_{\phi}(p)$$

implies $u_1 - u_2$ constant, hence 0.

ϕ -exponential manifold III

• The cumulant function K_p satisfies

$$\ln_{\phi}\left(q\right) = u - \mathcal{K}_{\rho}(u) + \ln_{\phi}\left(p\right)$$

hence

$$\mathcal{K}_{p}(u) = \mathsf{E}_{\phi,p}\left[\mathsf{ln}_{\phi}\left(p\right) - \mathsf{ln}_{\phi}\left(q\right)\right] = \frac{\mathsf{E}_{\mu}\left[\phi(p)(\mathsf{ln}_{\phi}\left(p\right) - \mathsf{ln}_{\phi}\left(q\right)\right]}{\mathsf{E}_{\mu}\left[\phi(p)\right]}$$

• From the concavity $\ln_{\phi}\left(q
ight) - \ln_{\phi}\left(p
ight) \leq rac{1}{\phi(p)}(q-p)$, hence

$$\phi(p)K_p(u) \geq \phi(p)u + p - q,$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

in particular $K_p(u) \ge 0$.

ϕ -exponential manifold IV

• Assume that $r \in \mathcal{M}_{>}$ is represented at p and at q:

$$\begin{split} q &= \exp_{\phi} \left(u - \mathcal{K}_{p}(u) + \ln_{\phi}\left(p\right) \right), \quad u \in \mathcal{T}_{p}, \\ r &= \exp_{\phi} \left(v - \mathcal{K}_{p}(v) + \ln_{\phi}\left(p\right) \right), \quad v \in \mathcal{T}_{p}, \\ &= \exp_{\phi} \left(w - \mathcal{K}_{q}(w) + \ln_{\phi}\left(q\right) \right), \quad w \in \mathcal{T}_{q}. \end{split}$$

It follows

$$v - K_p(v) = w - K_q(w) + u - K_p(u),$$

and, taking the expectation at the escort p,

$$-K_{\rho}(v) = \mathsf{E}_{\phi,\rho}[w] - K_{q}(w) - K_{\rho}(u),$$

and substracting

$$v = w - \mathsf{E}_{\phi(p)}\left[w\right] + u$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

ϕ -exponential manifold V

Let us compute the Gateaux derivative of u → K_p(u) in the direction v ∈ T_p.

$$0 = \frac{d}{d\theta} \mathsf{E}_{\mu} \left[\exp_{\phi} \left((u + \theta v) - \mathcal{K}_{\rho}(u + \theta v) + \ln_{\phi}(\rho) \right) \right]$$
$$= \mathsf{E}_{\mu} \left[\phi(\exp_{\phi} \left((u + \theta v) - \mathcal{K}_{\rho}(u + \theta v) + \ln_{\phi}(\rho) \right) \right) (v - \frac{d}{d\theta} \mathcal{K}_{\rho}(u + \theta v)) \right]$$

then

$$\left.\frac{d}{d\theta}K_{p}(u+\theta v)\right|_{\theta=0}=DK_{p}(u)v=\mathsf{E}_{\phi(p_{u})}[v]$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Part 3 ϕ -exponential martingales

Joint work in progress with Marina Santacroce and Barbara Trivellato (Politecnico di Torino)

• B. Trivellato, International Journal of Theoretical and Applied Finance (2012), accepted

Second derivative

Second derivative

$$\exp_{\phi}{}''(u) = (\gamma'(u) + \gamma^2(u)) \exp_{\phi}(u), \quad u \neq -m.$$

The second derivative exists at -m if

$$\limsup_{u\downarrow -m} \gamma'(u) = 0$$

Tsallis \exp_q If q = 1/2,

$$\exp_{1/2}(u) = \left(1 + \frac{1}{2}u\right)_{+}^{2} \qquad \exp_{1/2}'(u) = \left(1 + \frac{1}{2}u\right)_{+}^{2}$$
$$\gamma(u) = \left(1 + \frac{1}{2}u\right)^{+} \qquad \gamma'(u) = -\frac{1}{2}\left[\left(1 + \frac{1}{2}u\right)^{+}\right]^{2}$$
$$\gamma'(u)/\gamma(u) = -\frac{1}{2}\left(1 + \frac{1}{2}u\right)^{+}$$

Kaniadakis exp_{κ}

Martingale measure and Girsanov Theorem

On the stochastic basis

$$\mathcal{B} = (\Omega, \mathcal{F}, \mathcal{F} = (\mathcal{F}_t \colon t \in [0, T]), \mathbb{P})$$

consider a Brownian motion W and a continuous semi-martingale X = M + A with quadratic variation [X].

Theorem

1. The process

$$Z_t = \exp\left(X_t - \frac{1}{2}[X]_t\right)$$

is a positive local martingale such that $dZ_t = Z_t dM_t$.

- 2. Z is a martingale if $E(Z_T) = 1$. In such a case $\mathbb{Q} = Z_T \cdot \mathbb{P}$ is a probability measure equivalent to \mathbb{P} .
- 3. The process

$$\widetilde{W}_t = W_t - [X, W]_t$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

is a \mathbb{Q} -brownian motion

Proofs

1. The Ito formula for Z gives

$$dZ_t = Z_t dM_t - \frac{1}{2}Z_t d[X]_t + \frac{1}{2}Z_t d[X]_t = Z_t dM_t$$

- Equivalence P ~ Q follows from the strict positivity of the exponential function. Conditions on X implying E(Z_T) = 1 are difficult because of the exponential growth.
- 3. Use Lévy theorem. Because of the equivalence,

$$[\widetilde{W}]_{\mathbb{Q}} = [\widetilde{W}]_{\mathbb{P}} = [W].$$

The $\ensuremath{\mathbb{Q}}\xspace$ -martingale property follows from the Ito formula for the product,

$$d(Z_t \widetilde{W}_t) = Z_t d\widetilde{W}_t + \widetilde{W}_t dZ_t + d[Z, \widetilde{W}]_t$$

= $(Z_t dW_t + \widetilde{W}_t dZ_t) +$
 $(-Z_t d[M, W]_t + d[Z, W]_t), \quad d[Z, W]_t = Z_t d[M, W]_t$

Deformed exponential martingale I

- Assume \exp_ϕ defined on $\mathbb R,$ strictly positive and of class C^2 e.g., Kaniadakis' $\exp_\kappa.$
- The Ito's formula applies to the semimartingale $Z = \exp_{\phi}(Y)$, where Y = M - C, M is the local martingale part of Y and C is a process with bounded variation trajectories.

$$dZ_t = \gamma(Y_t)Z_t dY_t + \frac{1}{2}(\gamma'(Y_t) + \gamma^2(Y_t))Z_t d[Y]_t$$

= $\gamma(Y_t)Z_t dM_t + Z_t \left(-\gamma(Y_t)dC_t + \frac{1}{2}(\gamma'(Y_t) + \gamma^2(Y_t))d[M]_t\right)$

• If $\gamma(Y_t)dC_t = \frac{1}{2}(\gamma'(Y_t) + \gamma^2(Y_t))d[M]_t$, then

$$dZ_t = \gamma(Y_t)Z_t dM_t$$

(日) (四) (문) (문) (문)

Deformed exponential martingale II

The condition can be rewritten as

$$dY_t = -\frac{\gamma'(Y_t) + \gamma^2(Y_t)}{\gamma(Y_t)}d[M]_t + dM_t$$

• Let W be a browniam motion and define $\widetilde{W} = \int \theta dW - A$ where A is a bounded variation process. Let us compute the differential of $Z\widetilde{W}$:

$$d(Z_t \widetilde{W}_t) = Z_t d\widetilde{W}_t + \widetilde{W}_t dZ_t + d[Z, \widetilde{W}]_t$$

= $(Z_t dW_t + \widetilde{W}_t dZ_t) +$
 $(-Z_t dA_t + d[Z, \int \theta W]_t), \quad d[Z, W]_t = \gamma(Y_t) \theta_t Z_t d[M, W]_t.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The martingale condition is $dA_t = \gamma(Y_t)\theta_t d[M, W]_t$.

ϕ -exponential martingale

Theorem

1. Assume $(\gamma' + \gamma^2)/\gamma$ continuous, bounded and positive. Then the system of stochastic differential equations

$$\begin{cases} dY_t = -\frac{\gamma'(Y_t) + \gamma^2(Y_t)}{\gamma(Y_t)} d[M]_t + dM_t, & Y_0 = 0, \\ dZ_t = \gamma(Y_t) Z_t dM_t, & Z_0 = 1 \end{cases}$$

has a unique martingale solution

$$Z_t = \exp_{\phi}\left(Y_t - \frac{1}{2}[Y]_t\right),$$

hence $\mathbb{Q} = Z_T \cdot \mathbb{P} \sim \mathbb{P}$.

2. Assume W is Browniam motion. Then $d\widetilde{W}_t = dW_t - \gamma(Y_t)\theta_t d[Y, W]$ is a Q-Brownian motion.

Discussion

- The relation with the standard Doleans exponential.
- The case C^1 , e.g. Tsallis is feasible because of a generalized Ito's formula.

• When \exp_{ϕ} has polynomial growth, the L^2 CAOS expansion is feasible.

Abstract

 ϕ -exponential families have been defined by J. Naudts [1] and include the statistical models introduced in Physics by C. Tsallis [2] This theory presents interesting geometric features [3], such as the notion of escort probability [4]. Here we discuss how to apply the nonparametric approach we used for ordinary exponential families [5-8] to this case [9]. In particular, we consider deformed exponentials as defined by Kaniadakis [10]. Such a non parametric extension was discussed by R.F. Vigelis and C.C. Cavalcante [11]. First, we discuss the generalization of the algebra of the finite state space case and the notion of extended exponential model [12–13]. Second, we consider the relevant non parametric differential geometry. Third, we discuss the dynamic case on a Wiener space setting [14], in particular the rephrasing of Girsanov's density theorem for deformed exponentials.

Abstract's bibliography I

- 1. J. Naudts, Generalised Thermostatistics (Springer, 2011)
- 2. C. Tsallis, Introduction to nonextensive statistical mechanics (Springer, 2009)
- S. Amari, H. Nagaoka, Methods of information geometry (American Mathematical Society, Providence, RI, 2000), ISBN 0-8218-0531-2, translated from the 1993 Japanese original by Daishi Harada
- 4. S. Amari, A. Ohara, Entropy 13(6), 1170 (2011)
- 5. G. Pistone, C. Sempi, Ann. Statist. 23(5), 1543 (1995), ISSN 0090-5364
- 6. P. Gibilisco, G. Pistone, IDAQP 1(2), 325 (1998), ISSN 0219-0257
- 7. G. Pistone, M. Rogantin, Bernoulli 5(4), 721 (1999), ISSN 1350-7265
- 8. A. Cena, G. Pistone, Ann. Inst. Statist. Math. 59(1), 27 (2007), ISSN 0020-3157
- G. Pistone, The European Physical Journal B Condensed Matter Physics 71(1), 29 (2009), ISSN 1434-6028, http://dx.medra.org/10.1140/epjb/e2009-00154-y
- 10. G. Kaniadakis, Physica A 296(3-4), 405 (2001)
- 11. R.F. Vigelis, C.C. Cavalcante, Journal of Theoretical Probability (2011), online First
- P. Gibilisco, E. Riccomagno, M.P. Rogantin, H.P. Wynn, eds., Algebraic and geometric methods in statistics (Cambridge University Press, Cambridge, 2010), ISBN 978-0-521-89619-1

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ○ ○ ○ ○

- 13. G. Pistone (2011), arXiv:1112.5123v1
- 14. B. Trivellato, International Journal of Theoretical and Applied Finance (2012), accepted