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Deformed exponentials I

H1 The real function φ : R> → R> is strictly positive, strictly
increasing, continuous.

φ-logarithm

lnφ (v) =

∫ v

1

dx

φ(x)
, v ∈ R>.

Properties

lnφ : R> →
]
−
∫ 1

0

dx

φ(x)
,

∫ +∞

1

dx

φ(x)

[
=]−m,+M[

is strictly increasing, strictly concave and twice
differentiable.

φ-exponential is the inverse function

expφ = lnφ
−1 : ]−m,+M[→ R>.

It is positive, increasing, convex, twice differentiable.



Deformed exponentials II

Rate function The φ-exponential is the solution of the Chauchy problem{
y ′(u) = φ(y(u)) ,

y(0) = 1

It is convenient to introduce the rate function

γ(u) =
d

du
log
(
expφ (u)

)
=
φ(expφ (u))

expφ (u)
,

Derivatives

expφ
′(u) = φ(expφ (u)) = γ(u) expφ (u) .

expφ
′′(u) = γ′(u) expφ (u) + γ(u) expφ

′(u)

= (γ′(u) + γ2(u)) expφ (u) .

(γ′(u) + γ2(u))

γ(u)
=

expφ
′′(u)

expφ
′(u)

=
d

du
log
(
expφ

′(u)
)
.



Deformed exponentials III
Self duality The deformed exponential is self-dual,

expφ (u) expφ (−u) = 1, lnφ (v) + lnφ

(
1

v

)
= 0,

if, and only if, the rate function γ is symmetric.

H2 We assume φ defined on R+ and

φ(0) = 0, M =

∫ +∞

1

dx

φ(x)
= +∞.

Extension The extended expφ is nonnegative, nondecreasing, convex,
differentiable, with derivative expφ

′(u) = φ(expφ (u)). The
rate function in not defined on ]−∞,−m] because there
expφ (u) = 0. However,

expφ
′(u) = γ(u) expφ (u)

if γ is extended with arbitrary bounded values, for example
0, on ]−∞,−m], expφ

′(u)(expφ (u))+ = γ(u).



Part 1
Extended φ-exponential
families

• G. Pistone, The European Physical Journal B Condensed
Matter Physics 71(1), 29 (2009), ISSN 1434-6028,
http://dx.medra.org/10.1140/epjb/e2009-00154-y

• L. Malagò, G. Pistone (2010), arXiv:1012.0637v1

• G. Pistone (2011), arXiv:1112.5123v1



Marginal polytope I

• On the finite state space (X , µ) we consider the φ-exponential
family

pθ(x) = expφ

 m∑
j=1

θjHj(x)− α(θ)

 p(x), θ ∈ Rm.

• The function α : Rm → R is convex and

α(θ) =
m∑
j=1

θjEp [Hj ]− Ep

[
lnφ

(
pθ
p

)]
.

• If the convex conjugate

α∗(η) = sup {θ · η − α(θ) : θ ∈ Rm}

is a maximum value, then

α∗(η) = θ̂ · η − α(θ̂), η = ∇α(θ̂).



Marginal polytope II

Definition
The marginal polytope of the φ-model (also called convex support) is the
convex hull M of the set {H(x) : x ∈ X} ⊂ Rm, H = (H1, . . . ,Hm).

Example (No-3-way-interaction)

• X = {+1,−1}, µ = #, p(x) = 1.

•

lnφ (pθ(x)) =

θ1x1 + θ2x2 + θ3x3 + θ12x1x2 + θ13x1x3 + θ23x2x3 − α(θ)

• The marginal polytope is the convex subset of R6 with vertices

{(x1, x2, x3, x1x2, x1x3, x2x3) : x1, x2, x3 = ±1} .

• Facets of the marginal polytope can be computed.



Convex conjugate

Theorem

1. The convex conjugate α∗ : Rm → R ∪ {+∞} of α is finite exactly
on the marginal polytope M = co (im H).

2. The gradient mapping ∇α : Rm → Rm is onto the interior M◦ of
the marginal polytope M.

3. α∗ restricted to M◦ is the Legendre transform of α that is,
α∗(η) = θ · η − α(θ) if η = ∇α(θ̂).

Proof.
See the ArXiv paper with the assumption m = +∞. Cfr. Th. 3.6 of L.D.
Brown, Fundamentals of statistical exponential families with applications
in statistical decision theory, Number 9 in IMS Lecture Notes.
Monograph Series (Institute of Mathematical Statistics, Hayward, CA,
1986), ISBN 0-940600-10-2.



Non parametric version I

Identification Two different sets of statistics Hj , j = 1, . . . ,m and H ′j ,
j = 1, . . . ,m′ define the same statistical model if, and only
if, the vector space generated by the centered random
variables is the same,

Span (Hj − Ep [Hj ] , j = 1, . . . ,m) =

Span
(
H ′j − Ep

[
H ′j
]
, j = 1, . . . ,m′

)
.

Non parametric Without reference to a vector basis nor to pameters, the
φ-exponential model is the set of probability density
function pu of the form

pu = expφ (u − Kp(u)) p, u ∈ V ,

where V is a linear sub-space of L0(p) and

Kp(u) = α(θ)−
m∑
j=1

θjEp [Hj ] , u =
m∑
j=1

θj (Hj − Ep [Hj ])



Non parametric version II

Chart The random variable u ∈ V is a unique parameterization
of pu as

u = lnφ

(
q

p

)
− Ep

[
lnφ

(
q

p

)]
.

Cumulant The quantity Kp(u) is a divergence of p from pu, as
Kp(0) = 0 and, from

u − Kp(u) = lnφ

(
q

p

)
, u ∈ L0(p),

we have

Kp(u) = −Ep

[
lnφ

(
p

q

)]
= Ep

[
lnφ̃

(
p

q

)]
, φ̃(x) = x2φ

(
1

x

)
> Ep

[
q

p
− 1

]
= 0, q 6= p



Non parametric version III
D Kp (u) v The non parametric derivative of the mapping

L0(p) : u 7→ Kp(u) is the directional derivative in direction
v ∈ L0(p). With the notation

D Kp (u) v =
d

dt
Kp(u + tv)

∣∣∣∣
t=0

,

one finds

Ep

[
φ

(
pu

p

)
v

]
= Ep

[
φ

(
pu

p

)]
D Kp (u) v .

Escort The escort mapping

φp : q 7→
φ
(

q
p

)
Ep

[
φ
(

q
p

)]
is one-to-one and

D Kp (u) v = Ep [φp(pu)v ]



Non parametric version IV

D2Kp(u)vw The second derivative of u 7→ expφ (u − Kp(u)) in the
directions v and w is the first derivative in the direction w
of u 7→ expφ

′(u − Kp(u))(v − DKp(u)v), therefore

D2Kp(u)vw =

Ep

[
expφ

′′(u − Kp(u))(v − DKp(u)v)(w − DKp(u)w)
]

Ep

[
expφ

′(u − Kp(u))
] .

If w = v 6= 0, then D2Kp(u)vv > 0, therefore the
functional K is strictly convex.

Conjugation The convex conjugate of L0(p) : u 7→ Kp(u), is defined in
the duality (u∗, u) 7→ Ep [u∗u] by

Hp(u∗) = sup {Ep [u∗u]− Kp(u) : u ∈ L0(p)} , u∗ ∈ L0(p).



Normal equations

If a maximum is reached at û, then the directional derivative of

L0(p) : u 7→ Ep [u∗u]− Kp(u)

is zero in each direction v ,

Ep [u∗v ]− Ep [φp(pû)v ] = 0, v ∈ L0(p).

Hence u∗ + 1 = φp (pû), therefore

Hp(u∗) = Ep [u∗û]− Kp(û)

= Ep [(1 + u∗)û]− Ep [(1 + u∗)Kp(û)]

= Ep

[
(1 + u∗) lnφ

(
pû

p

)]



Divergence and characterization

Theorem

1. The convex conjugate Hp of Kp is finite at u∗ if, and only if,
q = (u∗ + 1)p is a density, that is Ep [u∗] = 0, u∗ + 1 ≥ 0.

2. If q is a strictly positive density function and u∗ = q
p − 1, the

normal equation is 1 + u∗ = q
p = φp(pû), hence pû

p = φ−1p (q)
and

Hp(q) := Hp

(
q

p
− 1

)
= Eq

[
lnφ
(
φ−1p (q)

)]
.

3. If u1, . . . , ud are random variables in L0(p) and pθ is the
associates φ-exponential family, define the escort model
qθ = φp(pθ). Let q̃θ be a model wich gives to each uj the
same expected value as qθ. Then Hp(qθ) ≤ Hp(q̃θ).



Proof

1. Take a basis and apply the marginal polytope theorem.

2. If q is a strictly positive density function and u∗ = q
p − 1, the

normal equation is 1 + u∗ = q
p = φp(pû), hence pû

p = φ−1p (q) and
use the normal equations to get

Hp(q) := Hp(u∗)

= Ep

[
q

p
lnφ
(
φ−1p (q)

)]
= Eq

[
lnφ
(
φ−1p (q)

)]
.

3. Compare in the definition of conjugate the case with inequality with
the case of equality.

! φ−1p is not of the same type as φp.



Exposed subsets

Definition

• The trace on S ⊂ X of the φ-exponential family pθ is the
φ-exponential family

p|S,θ(x) = expφ

 m∑
j=1

θjHj(x)− αS(θ)

 p(x |S), x ∈ S .

• A subset S ⊂ X is exposed if S = H−1(F ) and F is a face of the
marginal polytope. Equivalently, there exists a non-negative random
variable of the form α0 +

∑d
j=1 αjHj whose support is S .

Note that the trace is not equal to the conditioning unless φ = 1.



Extended family

Theorem
Let θn, n = 1, 2, . . . , be a sequence of parameters such that for some
non-negative probability density function q we have
limn→∞ p(x ; θn) = q(x).

1. If the support of q is full, {q > 0} = X , then q belongs to the
φ-exponential family for some parameter value θ.

2. If the support of q is defective, then the sequence θn is divergent,
the support is an exposed subset of X , and q belongs to the trace
of the φ-exponential family on the support.

3. Viceversa, each trace on an exposed subset is a limit of elements of
the family.

Definition
The extended φ-exponential model is the closure of the φ-exponential
model. It is parameterized by the marginal polytope.



Part 2
Nonparametric φ-exponential
families

• G. Pistone, C. Sempi, Ann. Statist. 23(5), 1543 (1995), ISSN
0090-5364

• R.F. Vigelis, C.C. Cavalcante, Journal of Theoretical Probability
(2011), online First



φ-exponential manifold I

• On a finite state space (Ω,F , µ), the open convex set M> of
positive densities is an exponential model. The intrinsic geometry of
the exponential structure induces the e-geometry on M> in the
form of a differentiable manifold modelled on Rd , where
d + 1 = #Ω .

• On a general state space (Ω,F , µ), the same idea works but one
has to carefully select a model Banach space for the infinite
dimensional manifold supported by M>.

• One option is to fix a reference density p and consider the densities
q of the form

q = eu−Kp(u) · p(x) = eu−Kp(u)+ln p(x)

where u is a random variable uniquely determined by the reference
density p and by the condition Ep [u] = 0. The centered random
variable u is the nonparametric coordinate of q in the reference p.

• In the φ-exponential setting, we assume expφ to be defined on R,
increasing and convex. There are two options.



φ-exponential manifold II

• At each p the model space is the Museliac-Orlicz space determined
by the modular

v 7→ Eµ
[
expφ (v + lnφ (p))

]
.

• We define the tangent space Tp to be the set of such random
variables which are centered with respect to the escort probability
∝ φ(p).

• Consider the densities of the form

q = expφ (u − Kp(u) + lnφ (p)) , u ∈ Tp, Kp(u) ∈ R

• The coordinate u is uniquely determined because

u1 − Kp(u1) + lnφ (p) = u2 − Kp(u2) + lnφ (p)

implies u1 − u2 constant, hence 0.



φ-exponential manifold III

• The cumulant function Kp satisfies

lnφ (q) = u − Kp(u) + lnφ (p)

hence

Kp(u) = Eφ,p [lnφ (p)− lnφ (q)] =
Eµ [φ(p)(lnφ (p)− lnφ (q)]

Eµ [φ(p)]

• From the concavity lnφ (q)− lnφ (p) ≤ 1
φ(p) (q − p), hence

φ(p)Kp(u) ≥ φ(p)u + p − q,

in particular Kp(u) ≥ 0.



φ-exponential manifold IV

• Assume that r ∈M> is represented at p and at q:

q = expφ (u − Kp(u) + lnφ (p)) , u ∈ Tp,

r = expφ (v − Kp(v) + lnφ (p)) , v ∈ Tp,

= expφ (w − Kq(w) + lnφ (q)) , w ∈ Tq.

It follows

v − Kp(v) = w − Kq(w) + u − Kp(u),

and, taking the expectation at the escort p,

−Kp(v) = Eφ,p [w ]− Kq(w)− Kp(u),

and substracting
v = w − Eφ(p) [w ] + u



φ-exponential manifold V

• Let us compute the Gateaux derivative of u 7→ Kp(u) in the
direction v ∈ Tp.

0 =
d

dθ
Eµ
[
expφ ((u + θv)− Kp(u + θv) + lnφ (p))

]
= Eµ

[
φ(expφ ((u + θv)− Kp(u + θv) + lnφ (p)))(v − d

dθ
Kp(u + θv))

]
then

d

dθ
Kp(u + θv)

∣∣∣∣
θ=0

= DKp(u)v = Eφ(pu) [v ]



Part 3
φ-exponential martingales

Joint work in progress with Marina Santacroce and Barbara
Trivellato (Politecnico di Torino)

• B. Trivellato, International Journal of Theoretical and Applied
Finance (2012), accepted



Second derivative

Second derivative

expφ
′′(u) = (γ′(u) + γ2(u)) expφ (u) , u 6= −m.

The second derivative exists at −m if

lim sup
u↓−m

γ′(u) = 0

Tsallis expq If q = 1/2,

exp1/2(u) =
(
1 + 1

2u
)2
+

exp′1/2(u) =
(
1 + 1

2u
)
+

γ(u) =
(
1 + 1

2u
)+

γ′(u) = −1
2

[(
1 + 1

2u
)+]2

γ′(u)/γ(u) = −1
2

(
1 + 1

2u
)+



Kaniadakis expκ
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Martingale measure and Girsanov Theorem
On the stochastic basis

B = (Ω,F ,F = (Ft : t ∈ [0,T ]),P)

consider a Brownian motion W and a continuous semi-martingale
X = M + A with quadratic variation [X ].

Theorem

1. The process

Zt = exp

(
Xt −

1

2
[X ]t

)
is a positive local martingale such that dZt = ZtdMt .

2. Z is a martingale if E (ZT ) = 1. In such a case Q = ZT · P is a
probability measure equivalent to P.

3. The process

W̃t = Wt − [X ,W ]t

is a Q-brownian motion



Proofs

1. The Ito formula for Z gives

dZt = ZtdMt −
1

2
Ztd [X ]t +

1

2
Ztd [X ]t = ZtdMt

2. Equivalence P ∼ Q follows from the strict positivity of the
exponential function. Conditions on X implying E (ZT ) = 1 are
difficult because of the exponential growth.

3. Use Lévy theorem. Because of the equivalence,

[W̃ ]Q = [W̃ ]P = [W ].

The Q-martingale property follows from the Ito formula for the
product,

d(ZtW̃t) = ZtdW̃t + W̃tdZt + d [Z , W̃ ]t

= (ZtdWt + W̃tdZt)+

(−Ztd [M,W ]t + d [Z ,W ]t), d [Z ,W ]t = Ztd [M,W ]t



Deformed exponential martingale I

• Assume expφ defined on R, strictly positive and of class C 2 e.g.,
Kaniadakis’ expκ.

• The Ito’s formula applies to the semimartingale Z = expφ (Y ),
where Y = M − C , M is the local martingale part of Y and C is a
process with bounded variation trajectories.

dZt = γ(Yt)ZtdYt +
1

2
(γ′(Yt) + γ2(Yt))Ztd [Y ]t

= γ(Yt)ZtdMt+

Zt

(
−γ(Yt)dCt +

1

2
(γ′(Yt) + γ2(Yt))d [M]t

)
• If γ(Yt)dCt = 1

2 (γ′(Yt) + γ2(Yt))d [M]t , then

dZt = γ(Yt)ZtdMt



Deformed exponential martingale II

• The condition can be rewritten as

dYt = −γ
′(Yt) + γ2(Yt)

γ(Yt)
d [M]t + dMt

• Let W be a browniam motion and define W̃ =
∫
θdW − A where A

is a bounded variation process. Let us compute the differential of

Z W̃ :

d(ZtW̃t) = ZtdW̃t + W̃tdZt + d [Z , W̃ ]t

= (ZtdWt + W̃tdZt)+

(−ZtdAt + d [Z ,

∫
θW ]t), d [Z ,W ]t = γ(Yt)θtZtd [M,W ]t .

The martingale condition is dAt = γ(Yt)θtd [M,W ]t .



φ-exponential martingale

Theorem

1. Assume (γ′ + γ2)/γ continuous, bounded and positive. Then the
system of stochastic differential equations{

dYt = −γ
′(Yt)+γ

2(Yt)
γ(Yt)

d [M]t + dMt , Y0 = 0,

dZt = γ(Yt)ZtdMt , Z0 = 1

has a unique martingale solution

Zt = expφ

(
Yt −

1

2
[Y ]t

)
,

hence Q = ZT · P ∼ P.

2. Assume W is Browniam motion. Then
dW̃t = dWt − γ(Yt)θtd [Y ,W ] is a Q-Brownian motion.



Discussion

• The relation with the standard Doleans exponential.

• The case C 1, e.g. Tsallis is feasible because of a generalized Ito’s
formula.

• When expφ has polynomial growth, the L2 CAOS expansion is
feasible.



Abstract

φ-exponential families have been defined by J. Naudts [1] and include the

statistical models introduced in Physics by C. Tsallis [2] This theory

presents interesting geometric features [3], such as the notion of escort

probability [4]. Here we discuss how to apply the nonparametric approach

we used for ordinary exponential families [5-8] to this case [9]. In

particular, we consider deformed exponentials as defined by Kaniadakis

[10]. Such a non parametric extension was discussed by R.F. Vigelis and

C.C. Cavalcante [11]. First, we discuss the generalization of the algebra

of the finite state space case and the notion of extended exponential

model [12–13]. Second, we consider the relevant non parametric

differential geometry. Third, we discuss the dynamic case on a Wiener

space setting [14], in particular the rephrasing of Girsanov’s density

theorem for deformed exponentials.
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