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Outline of Part 1

▸ Motivations from Statistics and Machine Learning
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Motivations from Statistics and Machine Learning
Consider the following optimization problems

▸ log-likelihood estimation of the parameters of a statistical
model

max log p(x; ξ)

▸ stochastic relaxation of a function f(x) ∶ Ω→ R

minEp(x;ξ)[f(x)]

(cf. stochastic optimization)

▸ minimization (or maximization) of the polarization measure

POL(p) =∑
i

p2
i (1 − pi)

(Pino and Vidal-Robert, 2013)
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Optimization over Statistical Models
The previous examples fit the general case of the optimization of a
function whose variables are the parameters of a statistical model

LetM be a statistical model, i.e., a set of probability distributions
over a sample space Ω, e.g.,
▸ Gaussian distribution for Ω = Rd
▸ multinomial distribution for Ω finite

We want to solve the following optimization problem

inf
p∈M
F(p)

Given a parameterization ξ forM, i.e.,

M = {pξ(x; ξ) ∶ ξ ∈ Ξ}

the problem can be reformulated in a parametric form

inf
ξ∈Ξ

F (ξ) = inf
ξ∈Ξ

(F ○ p)(ξ)
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Gradient Descent Over Statistical Models
Optimizing F (ξ) over Ξ may be a non-trivial task, e.g., for
non-convex functions and in absence of closed-form solutions

A naive but still powerfull approach is gradient descent

ξt+1 = ξt − λ∇F (ξt)

where λ > 0 is the step size, and ∇ stands for ∂
∂ξ

However a series of issues may arise:
▸ dependence on the parameterization ξ
▸ slow convergence over plateaux
▸ a projection of the gradient is required on the boundary of Ξ

⇒ Most of these problem can be overcome by choosing a more
convenient geometry forM
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A Toy Example from Stochastic Relaxation
Let n = 2, Ω = {−1,+1}2, we want to minimize F(p) = Ep[f]

f(x) = x1 + 2x2 + 3x1x2

x1 x2 f(x)
+1 +1 6
+1 −1 −4
−1 +1 −2
−1 −1 0

The Euclidean gradient flow is the solution of the following
differential equation

ξ̇ = ∇F (ξ)

We are interested in studying gradient flows for different
parameterization over the independence model for X1,X2
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Gradient Flows on the Independence Model

F (µ) = ∑
x∈Ω

f(x)p1(x1)p2(x2) = −4µ1 − 2µ2 + 12µ1µ2

∇F (µ) = (−4 + 12µ2,−2 + 12µ1)T

Gradient flow in µ
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∇F (η) does not convergence to local optima, projection is required
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Natural Parameters for the Independence Model
If we restrict to positive probabilities p > 0, we can represent the
interior of the independence model as the exponential family

p(x;θ) = exp{
n

∑
i=1

θixi − ψ(θ)}

where ψ(θ) = lnZ(θ) is the log partition function

The natural parameters of the independence modelM1 represented
by an exponential family are θ = (θ1, . . . , θn) ∈ Rn, with

pi(xi) =
eθixi

eθi + e−θi

The mapping between marginal probabilities and natural
parameters is one-to-one for p > 0

θi = (ln(µi) − ln(1 − µi)) /2 µi =
eθi

eθi + e−θi
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Gradient Flows on the Independence Model

F (θ) = (−4eθ1−θ2 − 2e−θ1+θ2 + 6eθ1+θ2)/Z(θ)
∇F (θ) = Eθ[f(X −Eθ[X])] = Covθ(f,X)

Gradient flow in θ
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In the θ parameters, ∇F (θ) vanishes over the plateaux
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Gradient Flows on the Independence Model

Marginal probabilities µ
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Gradient flows ∇F (ξ) depend on the parameterization

In the η parameters, ∇F (η) does not convergence to the expected
distribution δx∗ over an optimum
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Riemannian Optimization

Riemannian optimization refers to the optimization of a cost
function defined over a Riemannian manifold

f ∶M→ R

Manifold structures appear in presence of symmetries in the space,
invariance properties of the cost function, or in the constraints

Applications in linear algebra, signal processing, robotics, machine
learning, statistics, physics, . . .

Advantages of a Riemannian approach to optimization:
▸ by taking into account the structure of the problem, more

effective algorithms can be developed

▸ a mathematical framework which provides the basis for
convergence analysis of the algorithms
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The Tangent Space
Suppose we have a manifold structure with coordinate charts

To implement first-order calculus, we need a differentiable structure

This is obtained by defining a tangent bundle TM, i.e., a set of
tangent spaces TxM for all x ∈M

M

x

TxM

v1(0)

v2(0) x1(t)
x2(t)

The tangent space can be identified by the linear space spanned by
the velocity vectors to all smooth curves passing through x
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Riemannian Metric
Over the tangent space is a vector space we can define an inner
product called Riemannian metric

g(v,w) = ⟨v,w⟩x ∶ TxM ×TxM→ R

The inner product induces a norm

∥v∥x =
√

⟨v,v⟩x

The inner product can be used to measure the length of a curve
x(t) with t ∈ [a, b]

L(x(t)) = ∫
b

a

√
⟨ẋ(t), ẋ(t)⟩x dt

A geodesic is a length-minimizing curve between two points
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Riemannian Gradient
Let F(x) ∶M↦ R be a smooth function over (M, g)

For each vector field V ∋ v overM, the Riemannian gradient of
f(x), i.e., the direction of steepest ascent is the unique vector that
satisfies

g(grad f,v) = Dv f,

where Dv f is the directional derivative of f in the direction v

Given a parameterization ψ−1(θ)↦ x forM, let f̃ = f ○ ψ−1

grad f̃(θ) =∑
i,j

gij
∂f̃

∂θi

∂

∂θj

with components G̃(θ)−1∇f̃(θ)

The Riemannian gradient depends on the metric g trough
G = [gij], with G−1 = [gij]
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Exponential Map
The exponential map is a map from the tangent space TxM to the
manifoldM, such that v is the tangent vector to the geodesic from
x to Expθt v

M

x

v

Expx(v)
TxM

Moreover, the exponential map may be hard to be computed, since
it requires the evaluation of the geodesic γ(t), with γ(0) = x for a
given γ̇(0)
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Riemannian Gradient Descent
Consider the naïve implementation of gradient descent on Rn

xt+1 = xt − λ∇f(xt)

This cannot be directly applied to manifolds, since we cannot sum
x ∈M and v ∈ TxM
Moreover, the gradient depends on the parameterization

Such problem can be addressed by computing the Riemannian
gradient and applying the exponential map

xt+1 = Expxt(−λgrad f(xt))

Relaxations, can be obtained using a retraction Rθ, a map from
tangent space to the manifold

Rx(v) ∶ TxM→M

which requires weaker conditions compared to the exponential map
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Geometry Derived by the KL Divergence

An alternative geometry for a statistical model can be defined by
measuring infinitesimal distances using the Kullback-Leibler
divergence

DKL(p∣∣q) = ∫
Ω
p(x) log

p(x)
q(x)

dx

It can be proved that such choice determines a Riemannian
structure forM, where the Fisher Information matrix plays the role
of metric tensor

The direction of steepest ascent ∆ξ in a Euclidean space for F can
then be evaluated by minimizing F (ξ +∆ξ) with ∥∆ξ∥ = 1

Amari replaces this contraint with the KL divergence

arg min
∆ξ

F (ξ +∆ξ)

s.t. DKL(pξ∣∣pξ+∆ξ) = ε
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Example: The Gaussian Distribution
ε−ball of constant KL divergence, ε = 0.02

-4 -3 -2 -1 0 1 2 3 4

µ1

0

1

2

3

4

5

6

σ
2 1

Let p0 ∼ N (µ0, σ
2
0), and p1 ∼ N (µ1, σ

2
1),

DKL(p0∣∣p1) = log
σ1

σ0
+ σ

2
0 + (µ0 − µ1)2

2σ2
1

− 1

2



18/67

Amari’s Natural Gradient (1998) 1/2
By taking the second-order Taylor approximation of the KL
divergence in ξ we get

DKL(pξ∣∣pξ+∆ξ) = Eξ[log pξ] −Eξ[log pξ+∆ξ]
≈ Eξ[log pξ] −Eξ[log pξ] −Eξ[∇ log pξ]T∆ξ+

− 1

2
∆ξTEξ [∇2 log pξ]∆ξ

= 1

2
∆ξTI(ξ)∆ξ,

where I(ξ) is the Fisher Information matrix

I(ξ) = −Eξ [∇2 log pξ+∆ξ]
= Eξ [∇ log p(ξ)∇ log p(ξ)T]
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Amari’s Natural Gradient (1998) 2/2
We proceed by taking the first-order approximation of F (ξ +∆ξ)

arg min
∆ξ

F (ξ) +∇F (ξ)T∆ξ

s.t.
1

2
∆ξTIξ(ξ)∆ξ = ε

We apply the Lagrangian method, and solve for ∆ξ

∇∆ξ (F (ξ) +∇F (ξ)T∆ξ − λ1

2
∆ξTI(ξ)∆ξ) = 0

∇F (ξ) − λI(ξ)∆ξ = 0

∆ξ = λI(ξ)−1∇F (ξ)

Such derivations lead to the natural gradient (Amari, 1998)

∇̃F (ξ) = I(ξ)−1∇F (ξ)
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Vanilla vs Natural Gradient: η

Vanilla gradient ∇F (η)
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In both cases there exist two basins of attraction, however ∇̃F (η)
convergences to δx distributions, which are local optima for F (η)
and where ∇̃F (δx) = 0
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Euclidean vs Natural Gradient: θ

Vanilla gradient ∇F (θ)
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In both cases there exist two basins of attraction, however in the
natural parameters ∇̃F (θ) “speeds up” over the plateaux
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Euclidean vs Natural Gradient: θ
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Euclidean vs Natural Gradient

Expectation parameters η
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The natural gradient flow is invariant to parameterization
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Riemannian Geometry of Statistical Manifolds

In the previous slide the natural gradient has been derived by
imposing a constant KL divergence

From a differential geometry point of view, the natural gradient
corresponds to the Riemannian gradient over a statistical manifolds
endowed with the Fisher information metric
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The Exponential Family
In the following, we consider models in the exponential family E

p(x,θ) = exp(
m

∑
i=1

θiTi(x) − ψ(θ))

▸ sufficient statistics T = (T1(x), . . . , Tm(x))
▸ natural parameters θ = (θ1, . . . , θm) ∈ Θ ⊂ Rm

▸ log-partition function ψ(θ)
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Fisher Information Metric
The tangent space at each point p is defined by

TpM = {U(x) ∶ Ep[U(x)] = 0}

Consider a curve p(θ) such that p(0) = p, then ṗ
p ∈ Tp

In a moving coordinate system, tangent (velocity) vectors in Tp(θ)
to the curve are given by logarithmic derivative

ṗ(θ)
p(θ)

= d

dθ
log p(θ) TpM = Span{Ti(x) −Ep[Ti(x)]}

The tangent space is provided with an inner product ⟨U,V ⟩p =
Ep[UV ] = uTI(p)v defined by the Fisher information matrix

I(θ) = [gij] = Eθ [
d

dθi
log p(θ) d

dθj
log p(θ)]
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ṗ(θ)
p(θ)

= d

dθ
log p(θ) TpM = Span{Ti(x) −Ep[Ti(x)]}

The tangent space is provided with an inner product ⟨U,V ⟩p =
Ep[UV ] = uTI(p)v defined by the Fisher information matrix

I(θ) = [gij] = Eθ [
d

dθi
log p(θ) d

dθj
log p(θ)]



25/67

Fisher Information Metric
The tangent space at each point p is defined by

TpM = {U(x) ∶ Ep[U(x)] = 0}

Consider a curve p(θ) such that p(0) = p, then ṗ
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Riemannian Natural Gradient
Let F(p) ∶M↦ R be a smooth function over (M, g)

For each vector field U overM, the natural gradient of F(p), i.e.,
the direction of steepest ascent is the unique vector that satisfies

g(gradF , U) = DU F ,

where DU F is the directional derivative of F in the direction U

Given a coordinate system ξ forM we have

∇̃F (ξ) =
d

∑
i,j=1

gij
∂F

∂ξi

∂

∂ξj
= I(ξ)−1∇F (ξ)

The Riemannian gradient depends on the metric g trough I = [gij]
We use ∇̃F (ξ) to distinguish the natural gradient from the vanilla
gradient ∇F (ξ), i.e., the vector of partial derivatives of F w. r. t. ξ
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Natural Gradient in Machine Learning
Natural gradient (Amari, 1998) methods are becoming constantly
popular in machine learning, e.g.,

▸ Training of Neural Networks (Amari, 1997) and recently Deep
Learning (Ollivier et. al., 2014)

▸ Reinforcement learning and Markov Decision Processes
(Kakade, 2001, Peters and Schaal, 2008)

▸ Stochastic Relaxation and Evolutionary Optimization (i.e.,
black-box derivative-free methods)
(Wiestra et. al., 2008-14; Malagò et. al., 2011; Ollivier et. al.,
2011, Akimoto et. al., 2012)

▸ Bayesian variational inference (Honkela et. al., 2008)
▸ Bayesian optimization
▸ and many others
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Information Geometry of the Gaussian Distribution in View
of Stochastic Optimization
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L. Malagò, M. Matteucci, and G. Pistone
Towards the geometry of estimation of distribution algorithms based on the
exponential family
In FOGA ’11, pages 230–242, ACM, New York, NY, USA, 2011



29/67

Context and Motivation
In this section we present an application of Information Geometry
to the context Random Search optimization

We focus on algorithms where the search for the optimum is guided
by some statistical model

We consider algorithm based on the minimization of the expected
value of a function by gradient descent techniques

We study the case of continuous domains, where statistical model
are Gaussian distributions
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A Small Example
A naïve model-based optimization algorithm is an iterative
procedure based on

1. Sampling from a statistical model

2. Evaluation of the function over the sample

3. Updating of the parameters of the distribution

Source: Wikipedia, CMA-ES
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Optimization over Statistical Models
Algorithms and heuristics in model-based optimization

▸ Sampling, Selection and Estimation paradigm (EDAs,
Larrañaga and Lozano, 2002, CE method, Rubinstein, 1997)

▸ Fitness Modeling (DEUM, Shakya et al., 2005)
▸ Covariance Matrix Adaptation (CMA-ES, Hansen et al., 2001),

Natural Evolutionary Strategies (NES, Wierstra et al., 2008)
▸ Boltzmann distribution and Gibbs sampler (Geman and

Geman, 1984), Simulated Annealing and Boltzmann Machines
(Aarts and Korst, 1989)

Many different fields of applications

▸ Random Search and Stochastic Optimization
▸ Policy Learning in Reinforcement Learning
▸ Neural Networks training
▸ Parameter estimation in Statistics
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Stochastic Relaxation in Rn

Consider the unconstrained minimization problem of f(x) ∶ Rn ↦ R

(P) min
x∈Rn

f(x)

LetM = {p(x;ξ)} be a statistical model parametrized by some
parameter vector ξ ∈ Ξ

Define F (p) = Ep[f] ∶M↦ R and its parametric representation
Fξ(ξ) = Eξ[f]

We look for the minimum of f by optimizing its stochastic
relaxation

(SR) min
ξ∈Ξ

F (ξ)

Some hypothesis onM are required for (R) and (SR) to be
equivalent
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Gradient Descent
We need a statistical model for the relaxation of f defined over Rn

→ A natural choice is the multivariate Gaussian Distribution

M = N (µ,Σ) = {p(x;ξ)} ξ = (µ,Σ)

We need a policy to search for densities in the model

→ A standard approach is gradient descent

ξt+1 = ξt − λ∇̃ξF (ξ)

▸ ∇̃ξF (ξ) is the natural gradient vector

▸ λ > 0 is step size

In black-box contexts f is unknown and can only be evaluated



33/67

Gradient Descent
We need a statistical model for the relaxation of f defined over Rn

→ A natural choice is the multivariate Gaussian Distribution

M = N (µ,Σ) = {p(x;ξ)} ξ = (µ,Σ)

We need a policy to search for densities in the model

→ A standard approach is gradient descent

ξt+1 = ξt − λ∇̃ξF (ξ)

▸ ∇̃ξF (ξ) is the natural gradient vector

▸ λ > 0 is step size

In black-box contexts f is unknown and can only be evaluated



33/67

Gradient Descent
We need a statistical model for the relaxation of f defined over Rn

→ A natural choice is the multivariate Gaussian Distribution

M = N (µ,Σ) = {p(x;ξ)} ξ = (µ,Σ)

We need a policy to search for densities in the model

→ A standard approach is gradient descent

ξt+1 = ξt − λ∇̃ξF (ξ)

▸ ∇̃ξF (ξ) is the natural gradient vector

▸ λ > 0 is step size

In black-box contexts f is unknown and can only be evaluated



33/67

Gradient Descent
We need a statistical model for the relaxation of f defined over Rn

→ A natural choice is the multivariate Gaussian Distribution

M = N (µ,Σ) = {p(x;ξ)} ξ = (µ,Σ)

We need a policy to search for densities in the model

→ A standard approach is gradient descent

ξt+1 = ξt − λ∇̃ξF (ξ)

▸ ∇̃ξF (ξ) is the natural gradient vector

▸ λ > 0 is step size

In black-box contexts f is unknown and can only be evaluated



33/67

Gradient Descent
We need a statistical model for the relaxation of f defined over Rn

→ A natural choice is the multivariate Gaussian Distribution

M = N (µ,Σ) = {p(x;ξ)} ξ = (µ,Σ)

We need a policy to search for densities in the model

→ A standard approach is gradient descent

ξt+1 = ξt − λ∇̃ξF (ξ)

▸ ∇̃ξF (ξ) is the natural gradient vector

▸ λ > 0 is step size

In black-box contexts f is unknown and can only be evaluated



34/67

Amari’s Natural Gradient
Why ∇̃ξF (ξ) and not just ∇ξF (ξ) ?

At this point we should know that the geometry ofM is not
Euclidean, Euclidean gradients are not invariant to
reparametrization

∇̃ξF (ξ) is the natural gradient, i.e., the direction of steepest
descent evaluated over a statistical model

In general ∇̃ξF (ξ) does not coincide with the vector of partial
derivatives with respect to ξ denoted by ∇ξF (ξ)
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The Gaussian Distribution
The multivariate Gaussian Distribution

p(x;µ,Σ) = (2π)−d/2∣Σ∣−1/2 exp(−1

2
(x −µ)TΣ−1(x −µ))

▸ µ is the mean vector
▸ Σ is the covariance matrix

The Gaussian distribution belongs to the exponential family

p(x;θ) = exp(
k

∑
i=1

θiTi(x) − ψ(θ))

▸ θ natural parameters
▸ {Ti} sufficient statistics
▸ ψ(θ) log of the partition function
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Change of Parameters: from (µ,Σ) and θ
By writing the Gaussian distribution as an exponential family

p(x;µ,Σ) = (2π)−d/2∣Σ∣−1/2 exp(−1

2
(x −µ)TΣ−1(x −µ))

we have

T = ((Xi), (X2
i ), (2XiXj)i<j)

T

= ((Ti), (Tii), (Tij)i<j)T

θ = (Σ−1µ, (−1

2
σii), (−1

2
σij)i<j)

T

= ((θi), (θii), (θij)i<j)T

ψ(θ) = n
2

log(2π) − 1

4
θTΘ−1θ − 1

2
log ∣ − 2Θ∣
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Change of Parameters: (µ,Σ) and θ
Equivalently we represent θ = (θ; Θ)

θ = (θi) = Σ−1µ

Θ =∑
i

θiieie
T
i +∑

i<j
θij(eieT

j + ejeT
i ) = −

1

2
Σ−1

so that
pθ(x;θ) = exp (θTx +xTΘx − ψ(θ))

θ = (θi)T = Σ−1µ

Θ = [θij] = −
1

2
Σ−1

µ = −1

2
Θ−1θ

Σ = −1

2
Θ−1
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Dual Parameterization
Exponential families admit a dual parametrization given by the
expectation parameters η = Eθ[T ]

η = ((µi), (σii − µ2
i ), (2σij − 2µiµj)i<j)

T

= ((µi), (ηii), (ηij)i<j)T

where ϕ(η) is the negative entropy of p

ϕ(η) = −n
2
(log(2π) + 1) − 1

2
log ∣E − ηηT∣

The Gaussian distribution in the η parameters becomes

p(x;η) = exp(−1

2
(x − η)T(E − ηηT)−1(x − η) + ϕ(η) + n

2
)

= exp(
k

∑
i=1

(Ti − ηi)∂iϕ(η) + ϕ(η))
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Change of Parameters: (µ,Σ) and θ
Equivalently we represent η = (η;E)

η = (ηi) = µ ,

E =∑
i

ηiieie
T
i +∑

i<j
ηij
eie

T
j + ejeT

i

2
= Σ +µµT

and

µ = η = Eη[X]
Σ = E − ηηT = Covη(X,X)
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Change of Parameters: (µ,Σ), η and θ

θ

p (µ,Σ)

η

∇θψ

ω

χ

∇ηϕ

Variable transformations are given by

η = ∇θψ(θ) = (∇ηϕ)−1(θ)
θ = ∇ηϕ(η) = (∇θψ)−1(η)

The θ and η are connected by the Legendre transform

ψ(θ) + ϕ(η) − ⟨θ,η⟩ = 0

η = ∇ψ(θ) = (−1

2
Θ−1θ,

1

4
Θ−1θθTΘ−1 − 1

2
Θ−1)

θ = ∇ϕ(η) = ((E − ηηT)−1η,−1

2
(E − ηηT)−1)
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Fisher Information Matrix
The geometry ofM is not Euclidean and the metric tensor is given
by the Fisher information matrix

Iξ(ξ) = Eξ [(∂i log p(x;ξ))(∂j log p(x;ξ))T]

with ∂i = ∂/∂ξi

Under certain regularity conditions, an equivalent formulation is
given by

Iξ(ξ) = −Eξ [∂i∂j log p(x;ξ)]

In the exponential family, the Fisher information in θ and η can be
evaluated as the Hessian of the dual functions

Iθ(θ) = Hessψ(θ)
Iη(η) = Hessϕ(η)
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Fisher Information Matrix
In the Gaussian distribution the Fisher information matrix admits a
closed formula (Miller, 1974)

Let µ and Σ be a function of the parameter vector ξ

Iξ(ξ) = [(∂iµ)TΣ−1(∂jµ) +
1

2
Tr (Σ−1(∂iΣ)Σ−1(∂jΣ))]

ij

When µ and Σ depend on disjoint sets of parameters, such as in
the mean and covariance parameterization, Iξ(ξ) becomes block
diagonal
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Fisher Information Matrix in (µ; Σ)

Iµ,Σ(µ; Σ) =

⎡⎢⎢⎢⎢⎢⎢⎣

i kl

j Σ−1 0

mn 0 αklmn

⎤⎥⎥⎥⎥⎥⎥⎦

αklmn =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1
2(σ

kk)2 , if k = l =m = n
σkmσln , if k = l ∨m = n
σkmσln + σlmσkn , otherwise
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Fisher Information Matrix in θ

Iθ(θ) =
1

2
×

⎡⎢⎢⎢⎢⎢⎢⎣

i kl

j −Θ−1 Λklθ

mn θTΛmn λklmn − θTΛklmnθ

⎤⎥⎥⎥⎥⎥⎥⎦

Λkl =
⎧⎪⎪⎨⎪⎪⎩

[Θ−1]⋅k[Θ−1]k⋅ , if k = l
[Θ−1]⋅k[Θ−1]l⋅ + [Θ−1]⋅l[Θ−1]k⋅ otherwise

λklmn =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[Θ−1]kk[Θ−1]kk , if k = l =m = n
[Θ−1]km[Θ−1]ln + [Θ−1]lm[Θ−1]kn , if k = l ∨m = n
2 ([Θ−1]km[Θ−1]ln + [Θ−1]lm[Θ−1]kn) otherwise

Λklmn =
⎧⎪⎪⎨⎪⎪⎩

[Λkk]⋅m[Θ−1]n⋅ , if k = l
[Λkl]⋅m[Θ−1]n⋅ + [Λkl]⋅n[Θ−1]m⋅ , otherwise
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Fisher Information Matrix in η 1/2

Iη(η) =

⎡⎢⎢⎢⎢⎢⎢⎣

i kl

j Γ −Kklη

mn −ηTKmn κklmn

⎤⎥⎥⎥⎥⎥⎥⎦

Γ = (E − ηηT)−1 + (E − ηηT)−1ηT(E − ηηT)−1η+
+ (E − ηηT)−1ηηT(E − ηηT)−1

Kkl =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[(E − ηηT)−1]⋅k[(E − ηηT)−1]k⋅ , if k = l
1
2
([(E − ηηT)−1]⋅k[(E − ηηT)−1]l⋅+

+ [(E − ηηT)−1]⋅l[(E − ηηT)−1]k⋅) otherwise
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Fisher Information Matrix in η 2/2

Iη(η) =

⎡⎢⎢⎢⎢⎢⎢⎣

i kl

j Γ −Kklη

mn −ηTKmn κklmn

⎤⎥⎥⎥⎥⎥⎥⎦

κklmn =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1
2[(E − ηηT)−1]kk[(E − ηηT)−1]kk , if k = l =m = n
1
2[(E − ηηT)−1]km[(E − ηηT)−1]ln , if k = l ∨m = n
1
4
([(E − ηηT)−1]km[(E − ηηT)−1]ln+

+ [(E − ηηT)−1]lm[(E − ηηT)−1]kn) otherwise.
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Reparameterization of Iξ

▸ The Fisher information matrix can be reparametrized using the
chain rule for differentiation

Iη(η) = J(∇ϕ)(η)T (Iθ ○ ∇ϕ)(η) J(∇ϕ)(η)

▸ Let J be the Jacobian of the variable transformation

J(∇ψ)(θ) = (Iη ○ ∇ψ)(θ)−1

J(∇ϕ)(η) = (Iθ ○ ∇ϕ)(η)−1

▸ By applying a transformation between one parameterization
and the other we obtain

Iθ(θ) = (Iη ○ ∇ψ)(θ)−1 = Iη(η)−1

Iη(η) = (Iθ ○ ∇ϕ)(η)−1 = Iθ(θ)−1
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Duality Between Natural and Vanilla Gradients

▸ Form previous relationships we obtain

∇̃ηF (η) = (∇θF ○ ∇ϕ)(η) = ∇θF (θ)
∇̃θF (θ) = (∇ηF ○ ∇ψ)(θ) = ∇ηF (η)

Indeed, we have

∇̃ηF (η) = Iη(η)−1∇ηF (η)
∇̃ηF (η) = (∇θF ○ ∇ϕ)(η)

▸ Since Hessψ(θ) = Covθ(T ,T )

∇̃ηF (η) = Covη(f,T ) = Eη[f(T − η)]
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Stochastic Natural Gradient Descent
Due to the properties of the exponential family

Hessψ(θ) = Iθ(θ) = Covθ(T ,T )
∇F (θ) = Cov(f,T )
∇̃F (θ) = Covθ(T ,T )−1 Cov(f,T )

For the Gaussian distribution in particular

∇̃F (θ) = Iη(θ)Cov(f,T )

This implies that vanilla and natural gradient in θ can be expressed
in terms of covariances that only depend on the evaluation of f

Gradients can be estimated from a sample by means of Monte
Carlo methods
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Vanilla and Natural Gradient

▸ Vanilla and Natural gradient flows are the solutions of the
following differential equations given an initial condition

ξ̇(t) = ∇ξF (ξ(t)) ξ̇(t) = ∇̃ξF (ξ(t)

▸ Notice that flows represent the expected behavior of an
algorithm for infinite sample size, when the step size is
infinitesimal
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Quadratic functions in R
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Vanilla and natural flows for f = x − 3x2, represented in the
parameter space (µ,σ). The level lines are associated to Eµ,σ[f].
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Quartic functions in R
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the parameter space (µ,σ). The level lines are associated to
Eµ,σ[f].



54/67

Quadratic functions in R2
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Optimization in the θ parameters
Solving the Stochastic Relaxation in the θ parameters provides a
natural way to identify sub-models

The inverse covariance matrix Σ−1 = −2Θ = −2[θij] is the precision
or concentration matrix

By fixing some θij = 0 we are identifying a lower-dimensional
exponential model in the Gaussian distribution

A zero entry θij = 0 implies conditional independence among Xi

and Xj given all the other variables, so that the sub-model has a
statistical interpretation
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Convergence of Markov Random Fields
[Theorem FOGA’15] For lower-bounded, lower semicontinuous f ,
with compact level sets, such that f ∈ Span{T1, . . . , Tk}, i.e.,

f =
k

∑
i=1

ciTi + c0

then the limits of natural gradient flows over the exponential family
with sufficient statistics {Ti} weakly converge and are supported by
the closed set where f reaches ess inf f . If the minimum is unique,
we have global convergence to the delta mass at the minimum

The result applies to the Gaussian distribution, and suggests to
choose lower-dimensional models when f has sparse interactions.
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Applications to the training of Neural Networks

References

C. Varady, R. Volpi, L. Malagò, and N. Ay.
Natural Wake-Sleep Algorithm

Neural Networks, 155 (2022)
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Sigmoid Belief Networks

Figure: Node of a Sigmoid Belief Network

p(y∣x) = ρy(1 − ρ)1−y

ρ = σ(b + xW T )
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Wake-Sleep Algorithm
The Helmholtz [Machine Dayan et al., 1995] is a Sigmoid Belief Network
constructed from a Generative and Recognition network to optimize the
Helmholtz Free Energy. The Wake-Sleep algorithm [Hinton et al., 1995]

Helmholtz Machine
and the Wake-Sleep
Algorithm

▸ Alternatively optimizes the Generation
network p and Recognition network q through
Wake and Sleep cycles.

▸ Wake: Updates the weights of the Generation
Network, optimizes:

Lp(θ, x ∼ D) = −E
h,x∼qφ(h∣x)

[ lnp(x,h)]

▸ Sleep: Updates the weights of the
Recognition Network, optimizes:

Lq(φ, (x,h)) = −E
h,x∼pθ(x,h)

[ ln q(h∣x)]

▸ Convergence properties were studied by [Ikeda
et al., 1999]
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The Fisher Matrix of a Helmholtz Machine
Natural Gradient follows the steepest descent by computing the inverse
of the Fisher Information Matrix

F = −Epθ(x,h) [∇
2
θ lnpθ(x,h)] = −Epθ(x,h)[ ∑

r,s∈Ni
i∈[0,L]

δrs∇θr∇θs lnp(hir ∣hi+1; θr)]

The Fisher Matrix has been shown to be
block-diagonal for specific architectures
[Ay, 2002], in particular for the HM we
can demonstrate

Fi
p,j = Ep(x,h)[σ

′

(W i
jh

i+1) hi+1hi+1T] ,

Fi
q,j = Eq(x,h)[σ

′

(V i
j h

i−1) hi−1hi−1T] .

The fine-grained block
diagonal structure of the
Fisher Matrix, where l0, l1, ...
are sizes of the layers:

The Fisher Matrices of both p and q are block-diagonal, largest block is
of size l0 × l0.
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Natural Reweighted Wake-Sleep
Extension of the Reweighted Wake-Sleep [Bornschein and Bengio,
2014a]:

▸ Wake phase: update the ∇GLp with the inverse Fisher Matrix of
the Generation Network

∇̃GLp(θ, x ∼ D) = F−1G (θ)Eq(h∣x)[∇G lnp(x,h)]

▸ Wake phase q update: ∇RLq with the inverse Fisher Matrix of the
Recognition Network and samples from the dataset:

∇̃RLq(φ,x ∼ D) = F−1R (φ)Eq(h∣x)[∇R ln q(h∣x)]

▸ Sleep phase: ∇RLq with the inverse Fisher Matrix of the
Recognition Network

∇̃RLq(φ, (x,h)) = F−1R (φ)Ep(h∣x)[∇R ln q(h∣x)]

Computation

▸ The estimation of the FIMs is done by Monte-Carlo sampling
▸ The inverse of FIM is stabilized by Tikhonov Regularization and

sped up by using the Sherman-Morrison formula.
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Results on the FashionMNIST Dataset

(left) Loss in epochs (left), in seconds (right).
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Generated Images - FashionMNIST



64/67

Results on the TFD Dataset

(left) Loss in epochs (left), in seconds (right).
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Generated Images - TFD Dataset
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Take Home Message
The geometry of statistical models is rich, Riemannian Fisher-Rao
geometry is just one component

Dually-flat geometries play a key role in the computation of the
natural gradient, since they allow to obtain simplified formula

Natural gradient finds multiple applications in optimization: the key
aspect is the choice of models and parametrization which allow
computation in large dimensions
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Thanks for Your Attention!

For any question feel free to get in contact malago@tins.ro

malago@tins.ro

