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Motivations from Statistics and Machine Learning

Consider the following optimization problems

> log-likelihood estimation of the parameters of a statistical
model

max log p(x; &)

» stochastic relaxation of a function f(z): Q>R

(cf. stochastic optimization)

» minimization (or maximization) of the polarization measure
POL(p) = 2,9} (1-pi)
i

(Pino and Vidal-Robert, 2013)



Optimization over Statistical Models

The previous examples fit the general case of the optimization of a
function whose variables are the parameters of a statistical model
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Optimization over Statistical Models

The previous examples fit the general case of the optimization of a
function whose variables are the parameters of a statistical model

Let M be a statistical model, i.e., a set of probability distributions
over a sample space (2, e.g.,

» Gaussian distribution for = R?

» multinomial distribution for 2 finite

We want to solve the following optimization problem

inf
nf F(p)

Given a parameterization £ for M, i.e.,

M ={pe(x;8) : { € E}

the problem can be reformulated in a parametric form

iflelé F(¢) = iggé(}“op)(i)



Gradient Descent Over Statistical Models

Optimizing F'(&) over Z may be a non-trivial task, e.g., for
non-convex functions and in absence of closed-form solutions

A naive but still powerfull approach is gradient descent

£t+1 = 5t - )\VF(&)

where X\ > 0 is the step size, and V stands for a%

However a series of issues may arise:
» dependence on the parameterization &
» slow convergence over plateaux

» a projection of the gradient is required on the boundary of =

= Most of these problem can be overcome by choosing a more
convenient geometry for M



A Toy Example from Stochastic Relaxation

Let n =2, Q={-1,+1}% we want to minimize F(p) = E,[ f]

f(x) =21+ 229 + 32129




A Toy Example from Stochastic Relaxation

Let n =2, Q={-1,+1}% we want to minimize F(p) = E,[ f]

f(x) =21+ 229 + 32129

The Euclidean gradient flow is the solution of the following
differential equation

§=VF(¢)

We are interested in studying gradient flows for different
parameterization over the independence model for X7, Xo



Gradient Flows on the Independence Model

F(p) =Y f(@)pi(z1)p2(w2) = ~4p1 — 20 + 121 po
e

VF(p) = (=4 +1209, -2+ 12p11) "
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Gradient Flows on the Independence Model

F(p) =Y f(@)pi(z1)p2(w2) = ~4p1 — 20 + 121 po

xe)

VF(p) = (=4 +1209, -2+ 12p11) "
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VF(n) does not convergence to local optima, projection is required



Natural Parameters for the Independence Model

If we restrict to positive probabilities p > 0, we can represent the
interior of the independence model as the exponential family

p(x;0) = exp {i O;x; - 1!)(9)}

i=1
where ¢(0) =1n Z(8) is the log partition function

The natural parameters of the independence model M represented
by an exponential family are 8 = (01,...,60,,) € R, with
0;x;

pi(2i) = ——



Natural Parameters for the Independence Model

If we restrict to positive probabilities p > 0, we can represent the
interior of the independence model as the exponential family

p(x;0) = exp {iﬂimi - ¢(9)}

where ¢(0) =1n Z(8) is the log partition function

The natural parameters of the independence model M represented
by an exponential family are 8 = (01,...,60,,) € R, with

0;x;

pi(2i) = ——

The mapping between marginal probabilities and natural
parameters is one-to-one for p > 0

0i = (In(pi) —In(1 - 1)) /2 i =



Gradient Flows on the Independence Model
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Gradient Flows on the Independence Model

F(0) = (—4e%1702 — 9701402  gef1t02) ) 7(9)
VE(0) =E¢[f(X - Eg[X])] = Cove(f,X)

Gradient flow in Gradient vectors in 8, A =0.15
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In the O parameters, VF'(0) vanishes over the plateaux
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Gradient Flows on the Independence Model

Marginal probabilities p Natural parameters 6

N

1.0

0.6
|

uz

0.4
|

0.2

0.0
|

Gradient flows VF'(£) depend on the parameterization

In the 1 parameters, VF'(n) does not convergence to the expected

distribution 4+ over an optimum
9/67



Riemannian Optimization



Riemannian Optimization

Riemannian optimization refers to the optimization of a cost
function defined over a Riemannian manifold

f:M->R
Manifold structures appear in presence of symmetries in the space,
invariance properties of the cost function, or in the constraints

Applications in linear algebra, signal processing, robotics, machine
learning, statistics, physics, ...



Riemannian Optimization

Riemannian optimization refers to the optimization of a cost
function defined over a Riemannian manifold

f:M->R

Manifold structures appear in presence of symmetries in the space,
invariance properties of the cost function, or in the constraints

Applications in linear algebra, signal processing, robotics, machine
learning, statistics, physics, ...
Advantages of a Riemannian approach to optimization:

» by taking into account the structure of the problem, more

effective algorithms can be developed

» a mathematical framework which provides the basis for
convergence analysis of the algorithms



The Tangent Space
Suppose we have a manifold structure with coordinate charts
To implement first-order calculus, we need a differentiable structure

This is obtained by defining a tangent bundle TM, i.e., a set of
tangent spaces T, M for all z € M

-

7%

The tangent space can be identified by the linear space spanned by
the velocity vectors to all smooth curves passing through z



Riemannian Metric

Over the tangent space is a vector space we can define an inner
product called Riemannian metric

g(v,w)=(v,w)y : TMxT,M->R
The inner product induces a norm
lv], = V{v,v)e

The inner product can be used to measure the length of a curve
x(t) with ¢ € [a,b]

L) = [ ViED #0

A geodesic is a length-minimizing curve between two points



Riemannian Gradient
Let F(z) : M ~ R be a smooth function over (M, g)

For each vector field V' 3 v over M, the Riemannian gradient of
f(x), i.e., the direction of steepest ascent is the unique vector that
satisfies

g(grad f,v) = Dy f,

where D,, f is the directional derivative of f in the direction v



Riemannian Gradient

Let F(z) : M ~ R be a smooth function over (M, g)

For each vector field V' 3 v over M, the Riemannian gradient of
f(x), i.e., the direction of steepest ascent is the unique vector that
satisfies

g(grad f,v) =Dy f,

where D,, f is the directional derivative of f in the direction v
Given a parameterization ¢~ 1(8) — z for M, let f = for)~!

of o

I
grad f(8) => g 20: 90,

i3
with components G(8)~'v f(0)

The Riemannian gradient depends on the metric g trough
G =[gij], with G' = [¢"]



Exponential Map

The exponential map is a map from the tangent space T, M to the
manifold M, such that v is the tangent vector to the geodesic from

x to Expg, v

Moreover, the exponential map may be hard to be computed, since
it requires the evaluation of the geodesic v(t), with v(0) = z for a
given 4(0)



Riemannian Gradient Descent
Consider the naive implementation of gradient descent on R"
Tye1 = T — AV f(24)

This cannot be directly applied to manifolds, since we cannot sum
rzeMand ve T, M

Moreover, the gradient depends on the parameterization



Riemannian Gradient Descent

Consider the naive implementation of gradient descent on R"

Tip1 = 2 — AV f(2)

This cannot be directly applied to manifolds, since we cannot sum
rzeMand ve T, M

Moreover, the gradient depends on the parameterization

Such problem can be addressed by computing the Riemannian
gradient and applying the exponential map

Tta1 = Exp,, (~Agrad f(z:))

Relaxations, can be obtained using a retraction Rg, a map from
tangent space to the manifold

Ro(v) : TaM > M

which requires weaker conditions compared to the exponential map



Geometry Derived by the KL Divergence



Geometry Derived by the KL Divergence

An alternative geometry for a statistical model can be defined by
measuring infinitesimal distances using the Kullback-Leibler
divergence

Dk (pllg) = fﬂp(:v) log 58 dz



Geometry Derived by the KL Divergence

An alternative geometry for a statistical model can be defined by
measuring infinitesimal distances using the Kullback-Leibler
divergence

p(z)

q(x) a

Dk (pllg) = fﬂp(:ﬁ) log

It can be proved that such choice determines a Riemannian
structure for M, where the Fisher Information matrix plays the role
of metric tensor

The direction of steepest ascent A€ in a Euclidean space for F' can
then be evaluated by minimizing F'(& + A&) with |Ag| =1

Amari replaces this contraint with the KL divergence
argmin F(€ + A¢&)
Ag

s.t. Dii (pellpesne) = €



Example: The Gaussian Distribution

e—ball of constant KL divergence, € = 0.02
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Amari's Natural Gradient (1998) 1/2

By taking the second-order Taylor approximation of the KL
divergence in £ we get

Dk (pellpesne) = E¢[logpe] — E¢[log pesae]
~ Eg [logpg] — Eg [1ng£] — Eg[v 1ng§:|TA€+
1
- éASTEg [V logpe| A¢
1

= SAETI(O)AE,

where (&) is the Fisher Information matrix

I(£) = ~E¢ [v2log pe. ae]
= E¢ [V logp(€)V logp(&)” ]



Amari's Natural Gradient (1998) 2/2
We proceed by taking the first-order approximation of F'(§€ + A£)

argmin F(&)+ VF(&)TAg
Ag
s.t. %AgTIE(g)Ag =€

We apply the Lagrangian method, and solve for A&

Vag (F(E) +VF(&)TAE - A%AETI(s)AE) 0
VE(&) - A(§)AE=0

AE=M(&)'VF(€)

Such derivations lead to the natural gradient (Amari, 1998)

VE(&)=1(6)"'VF(¢)



Vanilla vs Natural Gradient: n

Vanilla gradient VF(n)
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Vanilla vs Natural Gradient: n

Vanilla gradient VF(n)

S’ (K[///
e/
=

‘g, %«eek‘{/
S

B3 Yuisrreuyly 6
\~<"Py‘.¢,¢
A,Vvvv+t

-g_i 4>~\“*~

T 11>-\~\‘\\\{<&
17>sg\\\\\\‘

?7 TENNNN “
—1‘.0 -0.5 0‘0 0‘5 1‘0

N2
-0.5 0.0 0.5 1.0

-1.0

Natural gradient VF(n)

. - ~F
In both cases there exist two basins of attraction, hoyvevefr VF((n))
. . ;
convergences to 0, distributions, which are local optima fo n

and where VF(6;) =0




Euclidean vs Natural Gradient:

Vanilla gradient VF(6)
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Euclidean vs Natural Gradient:

Vanilla gradient VF(0)
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Euclidean vs Natural Gradient

Expectation parameters n Natural parameters 6
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Riemannian Geometry of Statistical Manifolds



Riemannian Geometry of Statistical Manifolds

In the previous slide the natural gradient has been derived by
imposing a constant KL divergence

From a differential geometry point of view, the natural gradient
corresponds to the Riemannian gradient over a statistical manifolds
endowed with the Fisher information metric



The Exponential Family

In the following, we consider models in the exponential family £

p(2.6) = exp (i 0.1 (=) - ww))

» sufficient statistics T" = (T1(x), ..., Tn(x))
» natural parameters 6 = (01,...,60,,) € © c R™

> log-partition function 1(8)



Fisher Information Metric

The tangent space at each point p is defined by

TpM = {U(z) : E,[U(z)] = 0}



Fisher Information Metric

The tangent space at each point p is defined by

TpM = {U(z) : E,[U(z)] = 0}

Consider a curve p(6) such that p(0) = p, then 71—3 €T,

In a moving coord.inate system., tangent (velc.Jcity) vectors in T,
to the curve are given by logarithmic derivative
pd) _d

]TQ) = @]ogp(e) Tp./\/l = Span{T@'(iﬂ) - Ep[Tz(m)]}



Fisher Information Metric

The tangent space at each point p is defined by

TpM = {U(z) : E,[U(z)] = 0}

Consider a curve p(6) such that p(0) = p, then 71—3 €T,

In a moving coord.inate system., tangent (velc.)city) vectors in T,
to the curve are given by logarithmic derivative
p(f) _d

]TQ) = @]ogp(e) Tp./\/l = Span{T@'(iﬂ) - Ep[Tz(w)]}

The tangent space is provided with an inner product (U, V), =
E,[UV] =uTI(p)v defined by the Fisher information matrix

d logp(O) 10gp(9)

1(0) = [9] =Eo | 1o
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Let F(p) : M ~ R be a smooth function over (M, g)
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Riemannian Natural Gradient
Let F(p) : M ~ R be a smooth function over (M, g)

For each vector field U over M, the natural gradient of F(p), i.e.,
the direction of steepest ascent is the unique vector that satisfies

g(grad F,U) =Dy F,
where Dy F is the directional derivative of F in the direction U
Given a coordinate system & for M we have

d ..
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Riemannian Natural Gradient

Let F(p) : M ~ R be a smooth function over (M, g)

For each vector field U over M, the natural gradient of F(p), i.e.,
the direction of steepest ascent is the unique vector that satisfies

g(grad F,U) =Dy F,
where Dy F is the directional derivative of F in the direction U

Given a coordinate system & for M we have

& LOF 9
VF(E)—MZ:lg]a—&a—gj—I(E) VF(§)

The Riemannian gradient depends on the metric g trough I = [g;;]

We use VF (&) to distinguish the natural gradient from the vanilla
gradient VF (&), i.e., the vector of partial derivatives of F' w.r.t. £



Natural Gradient in Machine Learning

Natural gradient (Amari, 1998) methods are becoming constantly
popular in machine learning, e.g.,

>

Training of Neural Networks (Amari, 1997) and recently Deep
Learning (Ollivier et. al., 2014)

Reinforcement learning and Markov Decision Processes
(Kakade, 2001, Peters and Schaal, 2008)

Stochastic Relaxation and Evolutionary Optimization (i.e.,
black-box derivative-free methods)

(Wiestra et. al., 2008-14; Malago et. al., 2011; Ollivier et. al.,
2011, Akimoto et. al., 2012)

Bayesian variational inference (Honkela et. al., 2008)
Bayesian optimization

and many others



Information Geometry of the Gaussian Distribution in View
of Stochastic Optimization

References

L. Malago, M. Matteucci, and G. Pistone
Towards the geometry of estimation of distribution algorithms based on the

exponential family
In FOGA '11, pages 230-242, ACM, New York, NY, USA, 2011
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Context and Motivation

In this section we present an application of Information Geometry
to the context Random Search optimization

We focus on algorithms where the search for the optimum is guided
by some statistical model

We consider algorithm based on the minimization of the expected
value of a function by gradient descent techniques

We study the case of continuous domains, where statistical model
are Gaussian distributions



A Small Example

A naive model-based optimization algorithm is an iterative
procedure based on

1. Sampling from a statistical model

2. Evaluation of the function over the sample

3. Updating of the parameters of the distribution

First generation

Second generation

Third generation

Source: Wikipedia, CMA-ES



Optimization over Statistical Models

Algorithms and heuristics in model-based optimization
» Sampling, Selection and Estimation paradigm (EDAs,
Larrafiaga and Lozano, 2002, CE method, Rubinstein, 1997)
> Fitness Modeling (DEUM, Shakya et al., 2005)

» Covariance Matrix Adaptation (CMA-ES, Hansen et al., 2001),
Natural Evolutionary Strategies (NES, Wierstra et al., 2008)

» Boltzmann distribution and Gibbs sampler (Geman and
Geman, 1984), Simulated Annealing and Boltzmann Machines
(Aarts and Korst, 1989)



Optimization over Statistical Models

Algorithms and heuristics in model-based optimization
» Sampling, Selection and Estimation paradigm (EDAs,
Larrafiaga and Lozano, 2002, CE method, Rubinstein, 1997)
> Fitness Modeling (DEUM, Shakya et al., 2005)

» Covariance Matrix Adaptation (CMA-ES, Hansen et al., 2001),
Natural Evolutionary Strategies (NES, Wierstra et al., 2008)

» Boltzmann distribution and Gibbs sampler (Geman and
Geman, 1984), Simulated Annealing and Boltzmann Machines
(Aarts and Korst, 1989)

Many different fields of applications

» Random Search and Stochastic Optimization
» Policy Learning in Reinforcement Learning
» Neural Networks training

» Parameter estimation in Statistics
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Define F(p) =E,[f]: M ~ R and its parametric representation
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Stochastic Relaxation in R®

Consider the unconstrained minimization problem of f(x):R" » R

(P)  min f(z)

zeR™

Let M = {p(x;&)} be a statistical model parametrized by some
parameter vector £ € =

Define F(p) =E,[f]: M ~ R and its parametric representation
Fe(€) = Ee[f]

We look for the minimum of f by optimizing its stochastic

relaxation
(SR)  min F(£)

Some hypothesis on M are required for (R) and (SR) to be
equivalent
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» VeF(€) is the natural gradient vector

> A >0 is step size



Gradient Descent

We need a statistical model for the relaxation of f defined over R"

— A natural choice is the multivariate Gaussian Distribution

M:N(”72):{p($;£)} 52(%2)

We need a policy to search for densities in the model

— A standard approach is gradient descent
g =€ - AV F(8)

» VeF(€) is the natural gradient vector

> A >0 is step size

In black-box contexts f is unknown and can only be evaluated
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Amari’'s Natural Gradient
Why V¢F (&) and not just V¢F(€) ?
At this point we should know that the geometry of M is not

Euclidean, Euclidean gradients are not invariant to
reparametrization

ﬁgF(E) is the natural gradient, i.e., the direction of steepest
descent evaluated over a statistical model

In general V¢F' (&) does not coincide with the vector of partial
derivatives with respect to & denoted by V¢F'(&)



The Gaussian Distribution

The multivariate Gaussian Distribution
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The Gaussian Distribution

The multivariate Gaussian Distribution

plas ) = 20 S exp (S (- )5 - )

> u is the mean vector

» Y is the covariance matrix

The Gaussian distribution belongs to the exponential family
k
plas0) - exp (3 01(2) - 0(0)
i=1

» 6 natural parameters
» {T;} sufficient statistics
» 9)(0) log of the partition function



Change of Parameters: from (u,Y) and 6

By writing the Gaussian distribution as an exponential family

s ) = (20) P exp (-3 (0 - )5 @ - )
we have

T = ((X.), (X2), (2X:X;)ics) "
= ((Ty), (Ty), (Tij)i<j)T

0

-1 L 4 L 4 T
)Y ”a(_§0' )7(_50 )z'<j

= ((62), (021), (0i5)i<i) "

$(8) = 5 log(2m) - ieT@-le - %log| _ 90



Change of Parameters: (u,>) and 6
Equivalently we represent 6 = (6;O)

0 = (91) = 2_1“

1
O =3 bieie] +3 0i(eie] +ejel) = 5> 1
%

i<j

so that
po(x;0) = exp (07 + 27Oz - 1(0))



Change of Parameters: (u,>) and 6
Equivalently we represent 6 = (6;O)

0 = (91) = 2_1“
1
@ = Z Hiieie;‘r + ZQZJ(eZe;F + eje;r) — _52—1
i i<j
so that
po(x;0) = exp (07 + 27Oz - 1(0))
0= (6)T -5 pe-307
1 __
©=[0y]= 35" T



Dual Parameterization

Exponential families admit a dual parametrization given by the
expectation parameters ) = Eg[T']

0= (). (03 - 12), (2005~ 2ty )ics)
= ((a)s (i) (Mg Yiss) "

where ¢(n) is the negative entropy of p

n 1
p(m) = =5 (log(2m) + 1) - 5 log | E - |



Dual Parameterization

Exponential families admit a dual parametrization given by the
expectation parameters ) = Eg[T']

1= (1), (31 - 12), (2035 = 241a11;)i<s)
= ((pi)s (ia)s (Mg )ics) "

where ¢(n) is the negative entropy of p
n 1
p(n) = =5 (log(2m) + 1) = S log|E — ' |
The Gaussian distribution in the i parameters becomes
1 T Ty-1 n
p(an) = exp (=g (@ =) (E-m ) (z-n)+em)+3

k
- (ST )0+ o))

)



Change of Parameters: (u,>) and 6
Equivalently we represent n = (n; F)

n=m)=m,

E = Zniieie? + > mij
1

i<j

T T
eie; +eje;

=N+ ppt
5 o

and

p=1=Ey[X]
Y= E -’ = Covy(X,X)



Change of Parameters: (u,>),  and 6

b

p— (1, X) Vne || Ve

/

Variable transformations are given by
1n=Vey(6) = (Vye) " (8)
0= Vnp(n) = (Voy) ™ (n)



Change of Parameters: (u,>),  and 6

o

p&— (1,X) V|| Vo
\>

Variable transformations are given by
1n=Vey(6) = (Vye) " (8)
0= Vnp(n) = (Voy) ™ (n)

0

n

The 6 and n are connected by the Legendre transform
() +p(n) - (6,m) =0



Fisher Information Matrix

The geometry of M is not Euclidean and the metric tensor is given
by the Fisher information matrix
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Fisher Information Matrix

The geometry of M is not Euclidean and the metric tensor is given
by the Fisher information matrix

I¢(&) = E¢ [ (0;log p(z; €)) (9; log p(x; €)) "]
with 9; = 8/8@

Under certain regularity conditions, an equivalent formulation is
given by

I¢(§) = —E¢ [0;05log p(x; §) ]

In the exponential family, the Fisher information in @ and 77 can be
evaluated as the Hessian of the dual functions

I9(0) = Hess 1) (0)
In(m) = Hess p(n)
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Let i and X be a function of the parameter vector &€
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Fisher Information Matrix

In the Gaussian distribution the Fisher information matrix admits a
closed formula (Miller, 1974)

Let i and X be a function of the parameter vector &€

v

1) = [0 'S 0m) + 5 T (57 02)57 (0,5)) |

When p and X depend on disjoint sets of parameters, such as in
the mean and covariance parameterization, I¢(&) becomes block
diagonal



Fisher Information Matrix in (u; %)

) kl
i| = 0
IMZ(M;E) =
mn 0 ‘ Allmn
I Cad ifk=l=m=n
Qklmn = 1 oFMe!™ | ifk=lvm=n

oFmaln 1 glmagkn - otherwise



Fisher Information Matrix in @

7 kl
J -07! A0

mn QTAmn ‘ Aklmn_eTAklmne

Aur [©071.%[O07 . if k=1
01 [07 1 + [071]4[07 1) otherwise

Tek[©7 ik fk=l=m=n
(O k[0 i + [0 1[0, ifk=lvm=n
2([0Nkm[0 in + [0 1im[O© 7" Ikn)  otherwise

A B [Akk].m[@_l]n. , ifk=1
S A ]on [0 e + [Aj]on[© ., otherwise



Fisher Information Matrix in np 1/2

7 kl
r -Kpm
Rklmn
L= (E-m") ™ +(E-m") " (E-m") n+
+(E =) ™ (B - ™)™

Iy(n) = ’

mn

_UTKmn

(B =)kl (B =)

[(E=m™) Nl (B -mm™) e if k=1
Ky =
+[(E-m") (B - nnT)_l]k.) otherwise



Fisher Information Matrix in p 2/2

7 kl

j -Kpn
In("?) =
mn _UTKmn Rklmn
B -m™) ™ el (B =) i ifk=l=m=n
SLE =) e (B =00 i ifk=lvm=n
Fklmn = 1 Tyl T
1 ([(E nn ) ]km[(E nm ) ]ln"‘

+ [(E=m") ™ um[(B =) kn)  otherwise.



Reparameterization of /¢

» The Fisher information matrix can be reparametrized using the
chain rule for differentiation

In(m) = J(Ve) ()" (Ig 0 V) () J(Ve)(n)

» Let J be the Jacobian of the variable transformation

J(V)(0) = (I o Vi)(8) "
J(Ve)(n) = (Igo V) (n)~"



Reparameterization of /¢

» The Fisher information matrix can be reparametrized using the
chain rule for differentiation

In(n) = J(Ve)(m)" (Ig o V) (n) J(Ve)(n)
» Let J be the Jacobian of the variable transformation
J(V)(8) = (In o V) (6) !
J(Ve)(n) = Tgove)(n)™

» By applying a transformation between one parameterization
and the other we obtain
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Reparameterization of /¢

» The Fisher information matrix can be reparametrized using the
chain rule for differentiation

In(n) = J(Ve) ()" (I o Vi) (n) J(Ve)(n)

» Let J be the Jacobian of the variable transformation

J(V)(0) = (Inovi)(8)™
J(Ve)(n) = (Ig o Vi) (m) ™

» By applying a transformation between one parameterization
and the other we obtain

0 Hess I

V'n@HVeﬂﬁ (11)_1H(1z)_1
_

I
K Hess ¢ n
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Duality Between Natural and Vanilla Gradients

» Form previous relationships we obtain

VnF(n) = (VeF o Vy)(n) =VeF(0)
VoF(0) = (VyF o V) (0) = VyF(n)

Indeed, we have

VnF(n) = In(n) "'V F(n)
VaF(n) = (VoF o V) (1)

» Since Hess¢(0) = Cove(T,T)

VaF(n) = Covy(f,T) =Ey[f(T - n)]



Stochastic Natural Gradient Descent

Due to the properties of the exponential family

Hessy(0) = I9(0) = Cove(T,T)
VF(0) = Cov(f,T)
VF(0) = Cove(T,T) ™" Cov(f,T)

For the Gaussian distribution in particular

VF(6) =1,(0)Cov(f,T)
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Stochastic Natural Gradient Descent

Due to the properties of the exponential family

Hessy(0) = I9(0) = Cove(T,T)
VF(0) = Cov(f,T)
VF(0) = Cove(T,T) ™" Cov(f,T)

For the Gaussian distribution in particular

VF(6) =1,(0)Cov(f,T)

This implies that vanilla and natural gradient in @ can be expressed
in terms of covariances that only depend on the evaluation of f

Gradients can be estimated from a sample by means of Monte
Carlo methods



Vanilla and Natural Gradient

» Vanilla and Natural gradient flows are the solutions of the
following differential equations given an initial condition

£(t) = VeF(£(1)) £(t) = VeF(€(1)

» Notice that flows represent the expected behavior of an
algorithm for infinite sample size, when the step size is
infinitesimal



Quadratic functions in R

~ = natural ela
~ = - natural theta
vanila eta |

vanilla theta
x__max

- = natural eta
~ = - natural theta
vanilla eta

vanilla theta
X max

Vanilla and natural flows for f = 2 — 322, represented in the
parameter space (y,0). The level lines are associated to E,, , [ f].




Quartic functions in R

atural eta ‘ I natural eta
- natural theta,

atural theta
—— vanilla eta I vanilla eta
anilla theta 3 vanilla theta

Vanilla and natural flows for f = 6z + 822 — 23 — 22#, represented in
the parameter space (1, 0). The level lines are associated to

Epolf]:
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Quadratic functions in R?

- = naturaleta

- = natural eta
~ = -natural theta
~ = -natural theta [{
vanilla eta
vanilla theta

Vanilla and natural flows for f = 1 + 2z — 333% - 2x129 — 21:%
projected onto (u1,u2), with 011 = 1,019 = =0.5, 092 = 2. Level

lines associated to f.
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Optimization in the @ parameters

Solving the Stochastic Relaxation in the @ parameters provides a
natural way to identify sub-models

The inverse covariance matrix X! = 20 = -2[6;;] is the precision
or concentration matrix

By fixing some 6;; = 0 we are identifying a lower-dimensional
exponential model in the Gaussian distribution

A zero entry 6;; = 0 implies conditional independence among X;
and X given all the other variables, so that the sub-model has a
statistical interpretation



Convergence of Markov Random Fields

[Theorem FOGA'15] For lower-bounded, lower semicontinuous f,
with compact level sets, such that f € Span{T1,...,Tx}, i.e.,

k
f=>caTi+c
-1

then the limits of natural gradient flows over the exponential family
with sufficient statistics {7;} weakly converge and are supported by

the closed set where f reaches essinf f. If the minimum is unique,
we have global convergence to the delta mass at the minimum



Convergence of Markov Random Fields

[Theorem FOGA'15] For lower-bounded, lower semicontinuous f,
with compact level sets, such that f € Span{T1,...,Tx}, i.e.,

k
f=>caTi+c
-1

then the limits of natural gradient flows over the exponential family
with sufficient statistics {7;} weakly converge and are supported by
the closed set where f reaches essinf f. If the minimum is unique,
we have global convergence to the delta mass at the minimum

The result applies to the Gaussian distribution, and suggests to
choose lower-dimensional models when f has sparse interactions.



Applications to the training of Neural Networks

References

C. Varady, R. Volpi, L. Malago, and N. Ay.
Natural Wake-Sleep Algorithm

Neural Networks, 155 (2022)



Sigmoid Belief Networks
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Figure: Node of a Sigmoid Belief Network
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Wake-Sleep Algorithm

The Helmholtz [Machine Dayan et al., 1995] is a Sigmoid Belief Network
constructed from a Generative and Recognition network to optimize the
Helmholtz Free Energy. The Wake-Sleep algorithm [Hinton et al., 1995]

» Alternatively optimizes the Generation
network p and Recognition network ¢ through
Wake and Sleep cycles.

» Wake: Updates the weights of the Generation
Network, optimizes:

L,(0,z~D)= X IN;dI)iE(hlw)[lnp(x, h)]

» Sleep: Updates the weights of the
Recognition Network, optimizes:

Helmholtz Machine Ly(¢,(x,h)) = -E  [Ing(hlz)]
and the Wake-Sleep h,w~pe (x,h)
Algorithm

» Convergence properties were studied by [lkeda
et al., 1999]



The Fisher Matrix of a Helmholtz Machine

Natural Gradient follows the steepest descent by computing the inverse
of the Fisher Information Matrix

F=-E, n[V5inpe(z,h)] = -Epe(x,h)[ > 6rsVe, Vo, lnp(h:;|hi+1;oT)]
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The Fisher Matrix of a Helmholtz Machine

Natural Gradient follows the steepest descent by computing the inverse
of the Fisher Information Matrix

F=-E, n[V5inpe(z,h)] = -Epg(x,h)[ > 6rsVe, Vo, lnp(hi|hi+1;eT)]

r,5€N;
i€[0,L]

The Fisher Matrix has been shown to be
block-diagonal for specific architectures
[Ay, 2002], in particular for the HM we

can demonstrate

F;,j = ]Ep(x,h)[o" (W;h“l) hi+1hi+1T:| ’

4,7



The Fisher Matrix of a Helmholtz Machine

Natural Gradient follows the steepest descent by computing the inverse
of the Fisher Information Matrix

F=-E, n[V5inpe(z,h)] = -Epg(x,h)[ > 6rsVe, Vo, lnp(hﬂh”l;aT)]
,SeN;
ZEFO,L]

The Fisher Matrix has been shown to be
block-diagonal for specific architectures
[Ay, 2002], in particular for the HM we

can demonstrate

The fine-grained block

diagonal structure of the
Fisher Matrix, where Iy, 1, ...
are sizes of the layers:

@ ! i7i+1Y 7i+174+1 T N
FPJ :]Ep(x’h)[a (th ' ) hen :|’ Ip* (19#1) " 1‘{

i " (1igi- i-17i-17T
Fq,j:Eq(m,h)[U (Vin'=') h =it ] 1

Iy *(lz=1)

The Fisher Matrices of both p and ¢ are block-diagonal, largest block is
of size l() X l().
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Natural Reweighted Wake-Sleep

Extension of the Reweighted Wake-Sleep [Bornschein and Bengio,
2014a):

» Wake phase: update the V£, with the inverse Fisher Matrix of
the Generation Network

VeLl,(0,x~D)= F&l(Q)Eq(h|m)[VG Inp(z,h)]

» Wake phase q update: VrL, with the inverse Fisher Matrix of the
Recognition Network and samples from the dataset:
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Natural Reweighted Wake-Sleep

Extension of the Reweighted Wake-Sleep [Bornschein and Bengio,
2014a):

» Wake phase: update the V£, with the inverse Fisher Matrix of
the Generation Network

VeLl,(0,x~D)= F&l(Q)Eq(h|m)[VG Inp(z,h)]

» Wake phase q update: VrL, with the inverse Fisher Matrix of the
Recognition Network and samples from the dataset:

VRL ().~ D) =FF(¢)Eg(npe)[VrIng(hlz)]

» Sleep phase: VrL, with the inverse Fisher Matrix of the
Recognition Network

VRLy(0, (2, 1) = FR ($)Epuia) [V Inq(hl2)]
Computation

> The estimation of the FIMs is done by Monte-Carlo sampling

» The inverse of FIM is stabilized by Tikhonov Regularization and
sped up by using the Sherman-Morrison formula.



Results on the FashionMNIST Dataset
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Results on th

e TFD Dataset
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Take Home Message

The geometry of statistical models is rich, Riemannian Fisher-Rao
geometry is just one component

Dually-flat geometries play a key role in the computation of the
natural gradient, since they allow to obtain simplified formula

Natural gradient finds multiple applications in optimization: the key
aspect is the choice of models and parametrization which allow
computation in large dimensions



Thanks for Your Attention!

For any question feel free to get in contact malago@tins.ro


malago@tins.ro

