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Abstract⋆

The Statistical Bundle is the set SE of couples (p, u) with p strictly positive probability function and u a real
random variable such that Ep(u) = 0. It is a vector bundle π : SE → E where E is the open probability simplex
on a finite set X . For example, if θ 7→ p(θ) ∈ E is a smooth one-dimensional probability model, the lift
θ 7→ (p(θ),Dp(θ)) is a smooth curve in the Statistical Bundle, where Dp(θ) is the Fisher’s score (logarithmic
derivative) of the model.
Given two points (p, u) and (q, v) in SE, one can define affine displacements in the elementary sense of Weyl
(1921),

((p, u), (q, v)) 7→ Vp,u(q, v) ∈ SpE,

and correspondingly define an affine geometry on the Statistical Bundle. The further assignment of a duality
pairing on the fibres produces by dualization a dually flat geometrical structure. See a tutorial in G Chirco and G
Pistone arXiv:2204.00917.
Defining the affine geometry on the Statistical Bundle implicitly defines the connection on the non-parametric
affine bundle of the open probability simplex.
The study of Information Geometry of the Statistical Bundle has other distinct advantages—first, a simplified
presentation of the transport Problem of the probability simplex. See G. Pistone. Statistical bundle of the transport
model. In GSI 5th Proceedings, 752–759. Springer-Verlag, 2021. Second, the vector bundle and its dual provides
the proper setting for studying Lagrangian and Hamiltonian mechanics of the probability simplex. See G Chirco, L
Malagò, G Pistone. Lagrangian and Hamiltonian dynamics for probabilities on the statistical bundle. International
Journal of Geometric Methods in Modern Physics, 19(13):2250214.1–46, August 2022.
The talk will mention other relevant references, particularly the generalization to continuous state space.

My presentation will mainly focus on the statistical meaning of the geometric concepts.



Motivation

• If the state space is finite, say Ω = {1, . . . , n}, the set of probability
functions p ∈ P is the probability simplex, a convex subset of the

affine space defined by A =
{
p ∈ Rn

∣∣∣∑n
j=1 pj = 1

}
. The set of

probability functions has naturally an affine structure whose vector
space is defined by B1 =

∑n
j=1 pj = 0. If θ 7→ p(θ) is a

1-dimensional statistical model, then the derivative (velocity) is
d
dθp(θ) ∈ B1.

• Ronald Fisher suggests a different affine structure. If the probability
functions are strictly positive, p ∈ P>, the natural way to compute
derivatives is the log-derivative, the Fisher’s score,
d
dθ log f (θ) = ḟ (θ)/f (θ) =

⋆

f (θ). In this case
⋆

f (θ) ∈ Bθ, where Bθ is
the vector space of random variables u such that

∑n
j=1 ujpj(θ) = 0.

Each density p has its own tangent space Bp.

• L. Boltzmann and W. Gibbs suggest considering for each ”state”
p ∈ P> the fluctuations at p, that is the random variables in Bp. In
particular, p ∝ eU , U −

∑n
j=1 Uj pj ∈ Bp has many names in

Statistical Physics.
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Finite sample space
• If the sample space Ω is finite, the set of all probability measures is

identified with the set P of all probability functions q,

q : Ω ∋ x 7→ q(x) ∈ R≥ ,
∑
x∈Ω

q(x) = 1 .

• The set P is a closed convex set of the vector space RΩ. It is called
standard simplex of RΩ. A polytope is the convex hull of a finite
number of points. In the case of the standard simplex, the
generating points are the delta probability functions δa, a ∈ Ω,
δa(x) = (x = a). A simplex is a polytope generated by affinely
independent points. Simplexes with the same number of vertexes
are transformed into one another by an affine function.

• Given the simplex P(Ω), its affine space is
A(Ω) =

{
v ∈ RΩ

∣∣∑
x∈Ω v(x) = 1

}
, and its tangent space is

TP(Ω) =

{
v ∈ RΩ

∣∣∣∣∣∑
x∈Ω

v(x) = 0

}

• Alexander Barvinok. A course in convexity, volume 54 of Graduate Studies in Mathematics. American
Mathematical Society, Providence, RI, 2002



Examples⋆
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• The entropy H (q) = −
∑

x∈Ω log q(x) q(x) = Eq [− log q]
q(x) > 0 has a maximum at the uniform probability function and a
minimum on δa, a ∈ Ω.

• If X ,Y ,Z are independent and ∼ q, the probability of “two equal”
is 3

∑
x∈Ω q(x)2(1− q(x)). The polarization index is

POL(q) = 4
∑

x∈Ω q(x)2(1− q(x)) = 4Eq [q(1− q)]. It is maximal
at the middle point of faces of dimension 1, and minimal on the
vertices. The uniform probability function is a critical point.

• The entropy has many interpretations. In particular, it is a form of potential energy, Giovanni Pistone.
Lagrangian function on the finite state space statistical bundle. Entropy, 20(2):139, 2018.

• Polarization is discussed in Giovanni Pistone and Maria Piera Rogantin. The gradient flow of the
polarization measure. with an appendix. arXiv:1502.06718, 2015.



Example⋆

δ11

δ21 δ12

δ22

γ1

γ2

−−−−→
margins

(µ1, ν1) (µ2, ν1)

(µ1, ν2) (µ2, ν2)

Probability simplex of P({1, 2}2) and the marginalization operator

margins : P({1, 2}2) ∋ γ 7→ (µ, ν) ∈ P({1, 2})2

The segment from γ1 to γ2 are the vertexes of a coupling polytope with

γ1 =

(
1/6 1/3
1/2 0

)
, γ2 =

(
1/2 0
1/6 1/3

)
.

• The algebraic features of Kantorovich distance are discussed in Giovanni Pistone, Fabio Rapallo, and
Maria Piera Rogantin. Finite space Kantorovich problem with an MCMC of table moves. Electron. J.
Statist., 15(1):880–907, 2021.



Affine space, affine atlas I

Given a set M and a real finite dimensional vector space V , Hermann
Weyl1 considers a displacement mapping

M ×M ∋ (p, q) 7→ −→pq ∈ V ,

such that

• for each p the mapping sp : M ∋ q 7→ sp(q) =
−→pq is 1-to-1, and

• the parallelogram law or Chasles relation,

−→pq +−→qr = −→pr

that is,

sp(q) + sq(r) = sp(r)

holds.



Affine space, affine atlas II

• In particular, it follows

−→pp = sp(p) = 0 and −→pq +−→qp = sp(q) + sq(p) = 0

• (M,V ,−→·· ) is an affine space. sp is a chart if the image is open. The
atlas of charts sp : M → V , p ∈ M, defines an affine manifold. All
change-of-chats mappings of the atlas are vector translations:

sp ◦ s−1
q : v 7→ sp(q) + v

1
Hermann Weyl. Space- time- matter / by Hermann Weyl. Dover, New York, 1952. translation of the 1921

RAUM ZEIT MATERIE



Example: the probability simplex I

• The base set M is the probability simplex P (Ω) and the vector
space V is the tangent space of the simplex,

V = TP (Ω) =

{
v ∈ RΩ

∣∣∣∣∣∑
x∈Ω

v(x) = 0

}
.

• The displacement is −→pq = q − p ∈ V because∑
x(q(x)− p(x)) = 1− 1 = 0. The mapping sp(q) = q − p is

1-to-1. The paralellogram law is (q − p) + (r − q) = (r − p).

• A vector base of V produces a faithful parameterization of M. For
example, a base of TP ({1, 2, 3}) is v1 = (1,−1, 0), v2 = (1, 0,−1),
and

(p, q) 7→ sp(q) = −(q(2)− p(2))

 1
−1
0

− (q(3)− p(3))

 1
0
−1

 7→

(−(q(2)− p(2)),−(q(3)− p(3))) ∈
hull ((1, 0), (1,−1), (0,−1), (−1, 0), (−1, 1), (0, 1)) ⊂ R2 .



Example: the probability simplex II

• For example, J. Aitchison. The statistical analysis of compositional
data. Monographs on Statistics and Applied Probability. Chapman&
Hall, London, 1986 uses a generating set of contrasts systematically.
I am not going to discuss his approach here.

• The use of integer values contrasts produces an algebraic theory as
in Giovanni Pistone, Eva Riccomagno, and Henry P. Wynn.
Algebraic statistics: Computational commutative algebra in
statistics, volume 89 of Monographs on Statistics and Applied
Probability. Chapman & Hall/CRC, Boca Raton, FL, 2001. For
example, Giovanni Pistone, Fabio Rapallo, and Maria Piera
Rogantin. Finite space Kantorovich problem with an MCMC of table
moves. Electron. J. Statist., 15(1):880–907, 2021.



Example: the open probability simplex
• In the previous example, the image of each sp : q 7→ q − p is a

translation by −p of the simplex. Hence it is closed in the tangent
space, and the manifold structure is not defined. In fact, we need an
open image.2

• Let us take as the base set the open simplex

P> (Ω) = {q ∈ P (Ω) | q(x) > 0, x ∈ Ω}

and the same vector space as in the previous case,
V = TP (Ω) = TP> (Ω). The displacement sp(q) = q − p satisfies
the parallelogram law and moreover, the image of sp is P> (Ω)− p
hence it is open in the tangent space. sp is a chart. Let the inverse
is s−1

p (v) = v + p and the change-of-chart is

v 7→ s−1
p (v) = v + p 7→ sq ◦ s−1

p (v) = (v + p)− q = v + sq(p)

• However, in the practice of statistical physics and statistics, other
affine geometries appear.

2We use the nonparametric definition of the manifold as in Serge Lang.
Differential and Riemannian manifolds, volume 160 of Graduate Texts in
Mathematics. Springer-Verlag, third edition, 1995



Fisher’s score I

• A curve or one-dimensional model is a mapping

I ∋ θ 7→ q(θ) ∈ P (Ω) .

• As P (Ω) ⊂ RΩ, we can assume I open and the mapping
differentiable. In such a case,

q̇(t) = lim
h→0

h−1(q(t + h)− q(t)) ∈ TP (Ω) .

Precisely because of that, we use the term “tangent space”: the
definition of tangent space depends on the definition of velocity of
variation of the curve.

• Assume now that there exists a couple (x , θ0) ∈ Ω× I such that the
curve θ 7→ q(θ) hits the facet {p | p(x) = 0} at θ = θ0, that is
q(x ; θ0) = 0.3 The differentiable curve θ 7→ q(x , θ) has a minimum
at θ0, hence q̇(x , θ0) = 0.



Fisher’s score II

It holds q(x ; θ) = 0 ⇒ q̇(x ; θ) = 0, hence and exists a curve
t 7→ ⋆

q(t) ∈ RΩ, the Fisher’s score, such that

q̇(x ; θ) =
⋆
q(x ; θ)q(x ; θ)

. It is an absolute continuity setting, q̇(θ) << q(θ).

• In particular, if θ 7→ q(θ) ∈ P> (Ω), then the Fisher’s score is
⋆
q(θ) = d

dθ log q(θ). There are many statistical reasons to take the
Fisher score as a useful notion of the velocity of variation in the
parameters of a statistical model.4

3
For this argument, see Nihat Ay, Jürgen Jost, Hông Vân Lê, and Lorenz Schwachhöfer. Information

geometry, volume 64 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys
in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in
Mathematics]. Springer, Cham, 2017

4
See, for example, Bradley Efron and Trevor Hastie. Computer age statistical inference, volume 5 of Institute

of Mathematical Statistics (IMS) Monographs. Cambridge University Press, New York, 2016. Algorithms, evidence,
and data science



Examples I
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Examples II

θ 7→θδa +

(
θ − 1

2

)2

δb +

(
1− θ −

(
θ − 1

2

)2
)
δc (red curve)

= θ2(δb − δc) + θ(δa − δb) +
1

4
(δb − δc)

θ 7→ q(θ) ∝ PθR(1−θ) = exp

(
θ log

P

R

)
· R (blue curve)

• The Fisher’s score is a contrast for the ”true” probability:

Eq(θ) [
⋆
q(θ)] =

∑
x∈Ω

q̇(x ; θ)

q(x ; θ)
q(x ; θ) =

d

dθ

∑
x∈Ω

q(x ; θ) = 0



Examples III

• The original example is the Gibbs-Boltzmann model5

β 7→ q(x ;β) = exp

(
− 1

β
H(x)− ψ(β)

)
· q(x) , β > 0 ,

with ψ(β) = logEq

[
e−

1
βH
]
.

• The Fisher’score is

⋆
q(β) =

d

dβ
log q(β) =

1

β2
H − d

dβ
ψ(β) =

1

β2

(
H − Eq(β) [H]

)
.

Fisher’s score is proportional to the fluctuation of H in this case.

5
See sec. 28 of Lev D. Landau and Eugenij M. Lifshits. Course of Theoretical Physics. Statistical Physics.,

volume V. Butterworth-Heinemann, 3rd edition, 1980



Statistical bundle, contrasts bundle
We are led to consider for each q ∈ P> (Ω) the vector space of
q-contrasts, that is, the random variables which are centered for q,

Bq =

{
u ∈ RΩ

∣∣∣∣∣∑
x∈Ω

u(x)q(x) = 0

}
.

The statistical bundle of P> (Ω) is the bundle SP> (Ω) → P> (Ω),

SP> (Ω) =
{
(q, v) ∈ P> (Ω)× RΩ

∣∣Eq [u] = 0
}



Parallel transport
• Each fiber Bq represents the tangent vectors (velocities) at q. We

need to introduce ”connections” between different ”expressions” of
the tangent space.

• Each fiber Bq has an inner product ⟨u, v⟩q = Eq [uv ]. The mapping

(q, u, v) 7→ ⟨u, v⟩q
is called the metric of the statistical bundle.

For all (p, u), (q, v) ∈ SP> (Ω),

• eUq
p : Bp ∋ u 7→ u − Eq [u] ∈ Bq is the exponential transport;

• mUp
q : Bp ∋ v 7→ q

p v ∈ Bp is the mixture transport.

For all (p, u), (q, v) ∈ SP> (Ω),〈
u,mUp

qv
〉
p
=
〈
eUq

pu, v
〉
q



Exercise

• model: θ 7→ q(θ) , θ ∈ I ⊂ R

• Fisher’s score, velocity:
⋆
q(θ) = d

dθ log q(θ) =
q̇(θ)
q(θ)

• Fisher’s information:

Eq(θ)

[
(
⋆
q(θ))

2
]
= ⟨⋆

q(θ),
⋆
q(θ)⟩q(θ) =∑
x

(
q̇(x ; θ)

q(x ; θ)

)2

q(x ; θ) =
∑
x

(q̇(x ; θ))2

q(x ; θ)

• Duality with u ∈ Bp and v ∈ Bp:

〈
u,mUp

qv
〉
p
=
∑
x

u(x)
q(x)

p(x)
v(x)p(x) =

∑
x

u(x)v(x)q(x) =∑
x

(u(x)− Eq [u]) v(x)q(x) =
〈
eUq

pu, v
〉
q



Affine space with a parallel transport

Because of what was said about the notion of Fisher’s score and the
bundle of contrasts, it is useful to rephrase Weyl’s definition by moving
from the trivial tangent bundle M × V to the nontrivial bundle of
contrasts or fluctuations.6

Affine space

Let M be a set and Bp, p ∈ M, a family of topological vector spaces
(top-linear spaces). Let (Uq

p), p, q ∈ M be a cocycle of top-linear
isomorphism Uq

p : Bp → Bq, Up
qUq

p = IBp . Define a displacement mapping

S : M ×M ∋ (p, q) 7→ sp(q) ∈ Bp

so that:

1. For each fixed p the mapping sp : q 7→ sp(q) = S(s, p) is injective

2. (Parallelogram law) S(p, q) + Up
qS(q, r) = S(p, r)

6
While still staying in the finite state space case, I start using a more general language taken from

infinite-dimensional differential geometry. See Serge Lang. Differential and Riemannian manifolds, volume 160 of
Graduate Texts in Mathematics. Springer-Verlag, third edition, 1995



Affine manifold I
The affine space provides an atlas of charts sp : M → Bp, p ∈ M. The
change-of-chart map is sp ◦ s−1

q . At ρ = s−1
q (w), w ∈ Bq, it holds

sp ◦ s−1
q (w) = sp(ρ) = sp(q) + Up

qsq(ρ) = sp(q) + Up
qw .

The change-of-origin map is the restriction of an affine map whose linear
part is the parallel transport.

Assume that the vector fibers of the affine space (M, (Bp),S) are Banach
spaces and assume that for each p, spM is a neighborhood of 0 in Bµ.
Define Up = s−1

p (sp(M)◦). Then (sp : Up) is a chart on M. The charts
are compatible, and the resulting manifold is the affine manifold of the
affine space.



Affine bundle

The specific form of the atlas defining the affine manifold allows the
extension of the same atlas to define an affine bundle.

Given the affine manifold M, consider the set

{(p, v) | p ∈ M, v ∈ Bq}

and, for each p ∈ M define the chart

sp(q, v) = (sp(q),Uq
pv) ∈ Bp × Bp

to define the manifold S M.

The statistical bundle of the affine manifold is where we define the
velocity of a curve. The affine bundle has a tangent bundle where we
define the second order geometry that is, accellerations.



Exponential affine space I

• We define the exponential displacement on P> (Ω) by

P> (Ω)× P> (Ω) ∋ (p, q) 7→ sp(q) = log
q

p
− Ep

[
log

q

p

]
∈ Bp ,

and the exponential transport by

eUq
p : Bp ∋ v 7→ v − Eq [v ] ∈ Bq .

• The (generalized) parallelogram law is(
log

q

p
− Ep

[
log

q

p

])
+ eUp

q

(
log

r

q
− Eq

[
log

r

q

])
=(

log
q

p
− Ep

[
log

q

p

])
+

(
log

r

q
− Ep

[
log

r

q

])
=

log
q

p
− Ep

[
log

r

p

]
.



Exponential affine space II

• The inverse chart is defined on all of Bp by

s−1
p (v) = exp (v − Kp(v)) · p = ep(v) , Kp(v) = logEp [e

v ] .

• The cumulant functional Kp has several important well-known
properties.

1. D (p ∥q) = Ep

[
log p

q

]
= Ep

[
log p

exp(v−Kp(v))·p

]
= Kp(v), that

is,
Kp(sp(q)) = D (p ∥q) .

2. dKp(v)[h] = Eep(v) [h] =
〈

ep(v)
p − 1, h

〉
ep(v)

3. d2Kp(v)[h, k] = Covep(v) (h, k) =
〈
eUep(v)

p h, eUep(v)
p k

〉
ep(v)

=〈
h,
(
mUp

ep(v)
eUep(v)

p

)
k
〉
p
.



Mixture affine space

• We define the mixture displacement on P> (Ω) by

P> (Ω)× P> (Ω) ∋ (p, q) 7→ ηp(q) =
q

p
− 1 ∈ Bp ,

and the mixture transport by

mUq
p : Bp ∋ v 7→ p

q
v ∈ Bq .

• The (generalized) parallelogram law is(
q

p
− 1

)
+

q

p

(
r

q
− 1

)
=

(
r

p
− 1

)
.

• The inverse chart is defined for all v > 1, w ∈ Bp by

η−1
p (v) = (1 + v) · p .



Kinematics I

Definition
The velocity of the smooth curve t 7→ γ(t) of the affine manifold is the
curve t 7→ (γ(t),

⋆
γ(t)) of the affine bundle whose second component is

⋆
γ(t) = lim

h→0
h−1(sγ(t)(γ(t + h)) =

d

dh
sγ(t)(γ(t + h))

∣∣∣∣
h=0

.

Definition
Let F be a section of the affine bundle (vector field), that is,
(p,F (p)) ∈ SM, p ∈ M. An integral curve of the section F is a curve
t 7→ γ(t) such that

⋆
γ(t) = F (γ(t)). A flow of the section F is a mapping

M × I ∋ (ν, t) 7→ Γt(ν)

such that for each ν the curve t 7→ Γt(ν) is an integral curve and
γ(0, ν) = ν.



Kinematics II

Definition
A curve I : t 7→ γ(t) is auto-parallel in the affine bundle if

⋆
γ(t) = Uγ(t)γ(s)

⋆
γ(s) s, t ∈ I .

Proposition

The following conditions are equivalent.

1. The curve γ is autoparallel.

2. The expression of the cuve in each chart is affine.

3. For all s, t, γ(t) = s−1
γ(s) ((t − s)

⋆
γ(s)).

Consider the curve t 7→ γ(t) with velocity t 7→ ⋆
γ(t). The acceleration

t 7→ ∗∗
γ(t) is the velocity t 7→ (µ(t),

⋆
γ(t)).



Examples of Kinematics I

• Velocity in the mixture affine manifold

⋆
p(t) = lim

h→0
h−1 S(p(t), p(t + h)) =

lim
h→0

h−1

(
p(t + h)

p(t)
− 1

)
=

ṗ(t)

p(t)

• Velocity in the exponential affine manifold

⋆
p(t) = lim

h→0
h−1 S(p(t), p(t + h)) =

lim
h→0

h−1

(
log

p(t + h)

p(t)
−
∫

log
p(t + h)

p(t)
p(t) dm

)
=

ṗ(t)

p(t)



Examples of Kinematics II

• It is remarkable that the expression of the velocity is the same in
both cases.The exponential velocity for a curve of the form of a
Gibbs model p(t) ∝ eα(t)U · p, that is p(t) = eα(t)U−ψ(t) · p, is

⋆
p(t) =

d

dt
(α(t)U − ψ(t)) =

α̇(t)U − ψ̇(t) = α̇(t)

(
U −

∫
U p(t) dm

)
.

In this case, the quantity
⋆
p(t) is seen as α̇(t) times the fluctuation(

U −
∫
U p(t) dm

)
.

• In the mixture case, the acceleration is

∗∗
p(t) = mUp(t)

p

d

dt
mUp

p(t)

⋆
p(t) =

p

p(t)

d

dt

p(t)

p

ṗ(t)

p(t)
=

p̈(t)

p(t)



Examples of Kinematics III

• In the exponential case, the acceleration is

∗∗
p(t) = eUp(t)

p

d

dt
eUp

p(t)

⋆
p(t) = eUp(t)

p

d

dt

(
ṗ(t)

p(t)
−
∫

ṗ(t)

p(t)
p dm

)
=

p̈(t)

p(t)
−
(
ṗ(t)

p(t)

)2

−
∫ (

p̈(t)

p(t)
−
(
ṗ(t)

p(t)

)2
)

p(t) dm =

p̈(t)

p(t)
−

[(
ṗ(t)

p(t)

)2

−
∫ (

ṗ(t)

p(t)

)2

p(t) dm

]

• For the Gibbs model above, the exponential acceleration is
proportional to the velocity, namely

∗∗
p(t) = α̈(t)

(
U −

∫
U p(t) dm

)
=
α̈(t)

α̇(t)
⋆
p(t) .



Examples of Kinematics IV

• The auto-parallel curves (geodesics) in the mixture geometry are of
the form

γ(t) = γ(0) + γ̇(0)t = (1 +
⋆
γ(0))γ(0) = (1− t)γ(0) + tγ(1)

The last expression explains the name.

• In the exponential geometry, the form of the auto-parallel curve
(geodesic) is

γ(t) = s−1
γ(0)(t(

⋆
γ(0))) = et

⋆
γ(0)−Kγ(0)(

⋆
γ(0)) · γ(0)

that is, it is an exponential family.

• The auto-parallel (geodesic) interval is the Hellinger arc

γ(t) ∝ γ(0)1−tγ(1)t



Example: gradient of the entropy I

The entropy of q ∈ P> (X ) is

H (q) = Eq [− log q] =
∑
x∈X

− log q(x) q(x) =
∑
x∈X

L(q(x))

By definition, the gradient gradH of a scalar field

H : P> (X ) → R

is defined by



Example: gradient of the entropy II

〈
gradH (q(t)) ,

D

dt
q(t)

〉
q(t)

=
d

dt
H (q(t))

=
d

dt

∑
x∈X

L(q(x ; t))

=
∑
x∈X

L′(q(x ; t))
d

dt
q(x ; t)

=
∑
x∈X

(−1− log (q(x ; t)))
D

dt
q(x ; t) q(x ; t)

= Eq(t)

[
−(1 + log (q(t)))

D

dt
q(t)

]
wheret 7→ q(t) is a generic smooth curve.
The gradient must belong to Bq so that

gradH (q) = −(1 + log (q))− Eq [−(1 + log (q))] = − log (q)−H (q)



Example: gradient of the entropy III

Notice that gradH (m) = 0 provided m is the uniform probability
function.
The gradient flow equation of the entropy is

D

dt
q(t) = − gradH (q(t))

which is a replicator equation7

d

dt
q(x ; t) = q(x ; t)

− log (q(x ; t))−
∑
y∈X

− log (q(y ; t)) q(y ; t)

 .

If q(0) = q0, then

⋆
q(0) =

D

dt
q(t)

∣∣∣∣
t=0

= − log (q0)−H (q0)



Example: gradient of the entropy IV

A computation shows that the solution of the gradient flow equation is a
(non-canonical) exponential family of the form

q(t) = exp (θ(t)
⋆
q(0)− Kq0(θ(t)

⋆
q(0))) · q0 .

with θ(0) = 0

• The first step is to compute the velocity. From

log q(t) = θ(t)
⋆
q(0)− Kq0(θ(t)

⋆
q(0)) + log q0

and the equation for the derivative of the cumulant function, the
velocity is

⋆
q(t) = θ̇(t)

⋆
q(0)− Eq(t)

[
θ̇(t)

⋆
q(0)

]
= θ̇(t)

(
− log q0 + Eq(t) [log q0]

)
• The entropy is

H (q(t)) = Eq(t) [− log q(t)] =

Eq(t) [−θ(t)
⋆
q(0)− log q0] + Kq0(θ(t)

⋆
q(0))



Example: gradient of the entropy V
• The gradient of the entropy is

− log q(t)−H (q(t)) =

θ(t)(−⋆
q(0) + Eq(t) [

⋆
q(0)])− log q0 + Eq(t) [log q0] =

(θ(t)− 1)
(
log q(0)− Eq(t) [log q(0)]

)
• The gradient flow equation is satisfied by

θ̇(t) = θ(t)− 1 ⇒ θ(t) = et − 1

This in turn, gives
q(t) ∝ qe

t

0 .

Computing the limits t → ±∞ is also interesting. Precisely,
limt→−∞ q(t) = m, and the other case follows from(

q0(x)

maxx q0(x)

)et

→

{
1 if q0(x) = maxx q0(x)

0 if q0(x) < maxx q0(x)

7
See, for example, §6.2 of Nihat Ay, Jürgen Jost, Hông Vân Lê, and Lorenz Schwachhöfer. Information

geometry, volume 64 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys
in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in
Mathematics]. Springer, Cham, 2017
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ANOVA with two non-independent factors I

• Consider a finite product sample space Ω = Ω1 × Ω2 with a joint
probability function

q : Ω1 × Ω2 ∋ (x1, x2) 7→ q(x1, x2) .

We denote the two margins by

q1(x1) =
∑
y

f (x1, y) , q2(x2) =
∑
x

q(x , x2) .

• We focus on the case q ̸= q1 ⊗ q2.

• For each random variable f ∈ L2(q) we look for an orthogonal
decomposition of the form

f (x1, x2) = f0 ⊕ (f1(x) + f2(x2))⊕ f12(x1, x2)

• Notice that we do not require f1 ⊥ f2 as it is done in case of
independence, cf Hajek:1968 and Sobol’:2001.



ANOVA with two non-independent factors II

• We call factors the two projections

X1(x1, x2) = x1 , X2(x1, x2) = x2 .

• Consider the subsets of {1, 2}, that is ∅, {1} , {2} , {1, 2}, partially
ordered by inclusion. Let XI be the components projection on I ,
XI = (Xj : j ∈ I ). Each I is an interaction.

• An effect of the interaction I is a random variable of the form f ◦XI

which is q-orthogonal to all g ◦ XJ for all J ≺ I , that is, J ⊂ I and
J ̸= I .

• The order of the interaction I is #I . Let Hk be the vector space
generated by the I -interactions of order k .

• An effect of order 0 is a grand mean;
• an effect of order 1 is a simple effect;
• an effect of order 2 is an interaction.

• H0 contains random variables which do not depend on any Xj

j = 1, 2. that is, H0 = R.



ANOVA with two non-independent factors III

• The space H1 is generated by the random variables of the form
f1 ◦ X1 and f2 ◦ X2 with

Eq [f1 ◦ X1] = Eq1 [f1] = 0

Eq [f2 ◦ X2] = Eq2 [f2] = 0

In fact, q-orthogonal to H0 = R is the same as zero q-expectation.

• An element of H1 is of the form

f1 ◦ X1 + f2 ◦ X2 , f1 ∈ L20(q1) , f2 ∈ L20(q2)

• The representation above is unique. In fact, if

f1(x1) + f2(x2) = 0 , x1 ∈ Ω1, x2 ∈ Ω2 ,

then both f1 and f2 must be constant. As the q-expectation is zero,
f1 = f2 = 0.



ANOVA with two non-independent factors IV

• An element of H2 is of the form f12 ◦ (X1,X2) with

f12 ◦ (X1,X2) ⊥ H∅,H{1},H{2}

The orthogonality with respect to H∅ implies zero q-expectation
Eq [f12] = 0. The orthogonality with respect to H∅ + H{1} and
H∅ + H{2} implies zero conditional expectation with respect to each
factor:

Eq (f12 ◦ (X1,X2)|X1) = 0 , Eq (f12 ◦ (X1,X2)|X2) = 0

• We look for a decomposition of f ∈ L2(q) of the form

0 = f0 + (f1 ◦ X1 + f2 ◦ X2) + f12 ◦ (X1,X2)

with f0 ∈ H0, (f1 ◦ X1 + f2 ◦ X2) ∈ H1, and f12 ◦ (X1,X2) ∈ H2.



ANOVA with two non-independent factors V

• Let f 7→ Hajek (q) f be the orthogonal projection of L2(q) onto H1,
the Hajek projection. It is a general device to approximate a
complex random variable with an additive model, cf Hajek:1968 and
Efron-Stein:1981.8

• Then, the orthogonal decomposition is

f = Eq f +Hajek (q) f + (I−Eq −Hajek (q))f .

• We want to compute the Hajek projection. It is a least square
problem

minEq

[
|f − f0 − f1 ◦ X1 − f2 ◦ X2|2

]
s.t.f0 ∈ R,Eq1 [f1] = 0,Eq2 [f2] = 0



ANOVA with two non-independent factors VI

• The following equations are the gradient equations of the least
square problem. They also derive from conditioning the
decomposition.

Eq [f ] = f0

Eq (f |X1) = f0 + f1 ◦ X1 + Eq (f2 ◦ X2|X1)

Eq (f |X2) = f0 + Eq (f1 ◦ X1|X2) + f2 ◦ X2

• Assume q = q1 ⊗ q2. The system of equations becomes

Eq [f ] = f0

Eq (f |X1) = f0 + f1 ◦ X1 +����Eq2 [f2]

Eq (f |X2) = f0 +����Eq1 [f1] + f2 ◦ X2 .



ANOVA with two non-independent factors VII

• The decomposition becomes

f = Eq [f ] +

(Eq (f − Eq [f ]|X1) + Eq (f − Eq [f ]|X2))+

(f − Eq [f ]− Eq (f |X1) + Eq (f |X2)) .

8
I suspect that it is what some call mean field approximation.



Computing the Hajek projection

• If we assume Eq [f ] = 0, the gradient equations for the Hajek
projection are9

Eq (f |X1) = f1 ◦ X1 + Eq (f2 ◦ X2|X1)

Eq (f |X2) = Eq (f1 ◦ X1|X2) + f2 ◦ X2

• With the kernel expression q = k · q1 ⊗ q2∑
y

f (x1, y) k(x1, y)q2(y) = f1(x1) +
∑
y

f2(y) k(x1, y)q2(y) ,∑
x

f (x , x2) k(x , x2)q1(x) =
∑
x

f1(x) k(x , x2)q1(x) + f2(x2) .

9
Giovanni Pistone. Information geometry of smooth densities on the Gaussian space: Poincaré inequalities. In

Signals and Communication Technology, pages 1–17. Springer International Publishing, 2021



Aside on Linear Programming10 I

• The primal problem in canonical form is

Find c = inf
∑
x

c(x)r(x)

Subject to
∑
x

A(y , x)r(x) = β(y) y ∈ Y

r(x) ≥ 0

• r is the primal plan

• a plan is feasible if the constraints hold

• The dual problem in standard form is

Find β =sup
∑
y

β(y)λ(y)

Subject to
∑
y

A(y , x)λ(y) ≤ c(x)



Aside on Linear Programming11 II

• λ is the dual plan

Strong duality theorem

If a feasible primal plan exists, then c = β. If moreover, c > −∞, then
primal optimal and dual optimal plans exist.

10
See §IV.8 in Alexander Barvinok. A course in convexity, volume 54 of Graduate Studies in Mathematics.

American Mathematical Society, Providence, RI, 2002
11

See §IV.8 in Alexander Barvinok. A course in convexity, volume 54 of Graduate Studies in Mathematics.
American Mathematical Society, Providence, RI, 2002



Fixed margins I

• Assume a product sample space X = Ω1 × Ω2 and consider the
probability simplex P (Ω1 × Ω2). The two marginalisation mappings
are

X1 : P (Ω1 × Ω2) ∋ q(·, ·) 7→
∑
x2

q(·, x2) ∈ P (X1)

X2 : P (Ω1 × Ω2) ∋ q(·, ·) 7→
∑
x1

q(x1, ·) ∈ P (X2)

• For each given q1 ∈ P (X1) and q2 ∈ P (X2) define

Π(q1, q2) = {q ∈ P (Ω1 × Ω2) |X1q = q1,X2q = q2} .

• The set of transport plans Π(q1, q2) is

• non-empty,
• convex,
• compact.



Fixed margins II

• The marginalization conditions∑
x2∈X2

q(y1, x2) = q1(y1) y1 ∈ X1∑
x1∈X1

q(x1, y2) = q2(y2) y2 ∈ X2

can be written as ∑
(x1,x2)∈X1×X2

(y1 = x1)q(x1, x2) = q1(y1)

∑
(x1,x2)∈X1×X2

(y2 = x2)q(x1, x2) = q2(y2)

thus identifying an operator A : (X1 ∪ X2)× (Ω1 × Ω2) with∑
(x1,x2)∈Ω1×Ω2

A(y ; x1, x2)q(x1, x2) = (q1 ∪ q2)(y)



Kantorovich optimal transport I

• Given the cost c : Ω1 ×Ω2 → R, Kantorovich looks for the transport
plan with minimal expected cost

inf

{∑
x1,x2

c(x1, x2)q(x1, x2)

∣∣∣∣∣ q ∈ Π(q1, q2)

}

• It is a primal problem in canonical form:

Find c = inf
∑
x1,x2

c(x1, x2)q(x1, x2)

Subject to
∑
x

A(y ; x1, x2)q(x1, x2) = (q1 ∪ q2)(y)

q(x1, x2) ≥ 0 .



Kantorovich optimal transport II

• The dual problem in standard form is

Find β =sup
∑
y

(q1 ∪ q2)(y)λ(y)

Subject to
∑
y

A(y ; x1, x2)λ(y) ≤ c(x1, x2)

• that is, given the form of A,

Find β =sup

∑
y1∈X1

q1(y1)λ1(y1) +
∑
y2∈X2

q2(y2)λ2(y2)


Subject to λ1(x1) + λ2(x2) ≤ c(x1, x2) .

• There exists a feasible transport plan, and the set of plans is
compact. It follows that the full strong duality theorem holds.



Kantorovich optimal transport III

• Let q̄, λ̄ be the optimal plan and dual plan. The equality of values
gives∑

x1,x2

c(x1, x2)q̄(x1, x2) =∑
x1∈X1

q1(x1)λ̄1(x1) +
∑
x2∈X2

q2(x2)λ̄2(x2) =∑
x1,x2

(
λ̄1(x1) + λ̄2(x2)

)
q̄(x1, x2)

• Now, the inequality c ≥ λ1 ⊕ λ2 implies

c(x1, x2) = λ̄1(x1) + λ̄2(x2) provided q̄(x1, x2) ̸= 0



Transport plans in E (Ω1 × Ω2)

• Define for all q1 ∈ E (Ω1) and q2 ∈ E (Ω2)

◦
Π(q1, q2) = {q ∈ E (Ω1 × Ω2) |X1q = q1,X2q = q2}

•
◦
Π is the set of positive couplings or positive transport plans of q1
and q2.

•
◦
Π is the base set of a sub-manifold of the affine statistical manifold
on E (Ω1 × Ω2).

• A sub-manifold of the affine manifold (M, sp,Bp,Uq
p : p, q ∈ M) is a

subset N ⊂ M such that for each q ∈ N there exists a smooth
splitting of the fibre Bq = SqN ⊕ RqN and the vector space SqN is
the set of all velocities of curves in N through q.

• Basic examples of sub-manifolds of affine statistical manifolds are
mixture models and exponential families, to be discussed elsewhere.
Here we discuss the set of couplings or transport plans.



◦
Π (q1, q2) as a sub-manifold of E (Ω1 × Ω2)

• Finite dimensional exponential families and finite-dimensional
mixture models are notable examples of sub-manifolds of the affine
manifold structure because they are flat in one of the two dual
geometries.

• Notice that the orthogonal projection on the space of velocities
provides the required splitting.

• Precisely, the space SqN of velocities is the affine expression of the
tangent space to N.

• The set of couplings Π(q1, q2) is an affine subset of the probability
simplex. Hence it is a polytope, a convex set generated by a finite
number of vertices.

• Hence,
◦
Π (q1, q2) is an open mixture model.



Velocities of curves in
◦
Π(q1, q2) I

• t 7→ q(t) is a smooth curve of E (Ω1 × Ω2) with values in the set of
strictly positive transport plans. We can say

t 7→ q(t) ∈
◦
Π(q1, q2)

• Recall Fisher’s score properties,

⋆
q(t) =

d

dt
log q(t) =

q̇(t)

q(t)

d

dt
Eq(t) [f ] =

〈
f − Eq(t) [f ] ,

⋆
q(t)

〉
q(t)

.

• For each random variable depending on the first variable only,
f1 ◦ X1 it holds

0 =
d

dt
Eq1 [f1] =

d

dt
Eq(t) [f1 ◦ X1] =〈

f1 ◦ X1 − Eq(t) [f1 ◦ X1] ,
⋆
q(t)

〉
q(t)

= Eq(t) [f1 ◦ X1
⋆
q(t)] ,

Similarly on the other projection.



Velocities of curves in
◦
Π(q1, q2) II

• It follows that

Eq(t) [
⋆
q(t)|X1] = 0 and Eq(t) [

⋆
q(t)|X2] = 0

that is, if t 7→ q(t) ∈
◦
Π (q1, q2), then

⋆
q(t) is an interaction at q(t),

⋆
q(t) ∈ H2(q(t)).

• Conversely, let q ∈
◦
Π (q1, q2) and c12 ∈ H(q). The curve

t 7→ (1 + tc) · q is defined in a neighborhood of 0. The margins are
correct,

E(1+tc12)·q [g ◦ Xi ] = Eq [(1 + tc12)g ◦ Xi ] = Eq1 [g ] ,

and the velocity at 0 is c12,

d

dt
log ((1 + tc12) · q)

∣∣∣∣
t=0

=
c12q

(1 + tc12)q

∣∣∣∣
t=0

= c12 .



Velocities of curves in
◦
Π(q1, q2) III

• In conclusion, for all q ∈
◦
Π(q1, q2), the velocities fiber is the vector

space of interactions,

Sq
◦
Π(q1, q2) = H2(q)

• The orthogonal splitting of the statistical bundle is

Sq E (Ω1 × Ω2) = Sq
◦
Π (q1, q2)⊕q Hajek (q)Sq E (Ω1 × Ω2) ,

where q1, q2 are the margins of q.

• Notice that the complement fiber is H1(q),

Hajek (q)Sq E (Ω1 × Ω2) =

{f1 ◦ X1 + f2 ◦ X2 |Eq1 [f1] = Eq2 [X2] = 0} ,

which is in turn related to the exponential families of additive
statistics

exp (f1 ◦ X1 + f2 ◦ X2 − Kq(f1 ◦ X1 + f2 ◦ X2)) · q .



◦
Π (q1, q2) as an affine space I

• If q, r ∈
◦
Π (q1, q2), given c ∈ H2(q) = Sq

◦
Π (q1, q2),

Er

[(q
r
c
)
gi ◦ Xi

]
= Eq [c gi ◦ Xi ] = 0

that is, q
r c ∈ H2(r) = Sr

◦
Π (q1, q2).

• We have defined a co-cycle of parallel transports on the bundle

S
◦
Π (q1, q2) =

{
(q, c)

∣∣∣∣ q ∈
◦
Π (q1, q2) , c ∈ H2(q)

}
• The dual transport is computed as follows. If

q, r ∈
◦
Π (q1, q2)

c ∈ Sq
◦
Π (q1, q2) = H2(q)

d ∈ Sr
◦
Π (q1, q2) = H2(r)



◦
Π (q1, q2) as an affine space II

then 〈
mUr

qc , d
〉
r
= Eq [cd ] = ⟨c , d − Hajek (q) d⟩q

• Let us compute the mixture geodesic. If (q, c) ∈ S
◦
Π (q1, q2), an

m-geodesic is a curve in t 7→ q(t) ∈
◦
Π (q1, q2) such that

(q(0),
⋆
q(0)) = (q, c) and

⋆
q(t) = mUq(t)

q c . It follows

q̇(t)

q(t)
=

q

q(t)
c then q(t) = (1 + tc) · q .

The m-geodesic from q in the direction c is t 7→ (1 + tc) · q.

• The the affine displacement is the geodesic at t = 1:

◦
Π (q1, q2)×

◦
Π (q1, q2) ∋ (q, r) 7→ r

q
− 1



◦
Π (q1, q2) as an affine space III

• The e-geodesic from q in the direction d is the solution of

⋆
q(t) = (I − Hajek (q(t)))d .

• A solution of this equation seems to require a solution of the Hajek
projection.



Gradient flow of the OT problem I

• Let us discuss the Optimal Transport OT problem in the framework
of the affine statistical bundle.

• c : Ω1 × Ω2 → R be a cost function and the expected cost function
as a function of the probability function is

C : E (Ω1 × Ω2) ∋ q 7→ Eq [c]

• The function q 7→ C (q) restricted to the open transport model
◦
Π (q1, q2) has gradient in S

◦
Π (q1, q2) given by

gradC : q 7→ c12(q) = c − Eq [c]− Hajek (q) c

• In fact for all curve t 7→ q(t) ∈
◦
Π (q1, q2), q(0) = q,

d

dt
C (q(t)) =

d

dt
Eq(t) [c] =

〈
c − Eq(t) [c] ,

⋆
q(t)

〉
q(t)

=〈
c − Eq(t) [c]− Hajek (q(t)) c ,

⋆
q(t)

〉
q(t)



Gradient flow of the OT problem II

• The equation of the gradient flow of C is

⋆
q(t) = −c12(q(t)) = −(c − Eq(t) [c]− Hajek (q(t)) c)

• Notice that c12(q) = c − Eq [c]− Hajek (q) c is defined for all
q ∈ Π(q1, q2). If q̂ is a zero of the extended gradient map,

gradC (q̂) = c12(q̂) = 0 ,

then c equals the sum of two functions in one variable on the
support of q̂.

• We expect any solution t 7→ q(t) of the gradient flow equation to
converge to a plan q̄ = limt→∞ q(t) ∈ Π(q1, q2) such that Eq̄ [c] is
the value of the Kantorovich optimal transport problem. The form
of the gradient is compatible with the classical result in OT.
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Mechanics I

Classical mechanics systematically exploits the duality between the so
called tangent and cotangent bundle.12 The mixture bundle and the
exponential bundle support the mechanics formalism.

Let be given two affine manifolds on the same base set M,
Mi = (M, (B i

µ)µ∈M , (
iUµν )µ,ν∈M ,

iS), i = 1, 2, and let be given for each
µ ∈ M a duality pairing

B1
µ × B2

µ ∋ (u1, u2) 7→ ⟨u1, u2⟩µ .

The affine manifolds M1 and M2 are in duality if for all µ, ν ∈ M,
u ∈ Bµ, v ∈ B2

ν , it holds〈
u, 2Uµνv

〉
µ
=
〈
1Uνµu, v

〉
ν
.



Mechanics II

• Here, the mixture and the exponential fibers are equal,
mBp = eBp = Bp, and the separating pairing is
⟨u, v⟩p =

∫
u v p dm. The mixture affine manifold and the

exponential affine manifold are dual. For u ∈ Bp and v ∈ Bq

〈
mUq

pu, v
〉
q
=

∫
p

q
u v q dm =

∫
u v p dm =∫

u

(
v −

∫
vp dm

)
p dm =

〈
u, eUp

qv
〉
p
.

Definition
Consider a M which is base of two dual affine manifolds M1 and M2. A
real function ϕ on M1 has a gradient gradϕ if gradϕ is a section of the
affine bundle S M2 and for all smooth curve t 7→ γ(t) ∈ M it holds

d

dt
ϕ(γ(t)) = ⟨gradϕ(γ(t)), ⋆

γ(t)⟩σ .



Mechanics III
• The full bundle is

1S1 E (µ) = {(q, η,w) | q ∈ E (µ) , η ∈ ∗Sq E (µ) ,w ∈ Sq E (µ)} .

• In terms of the exponential parallel transport, we define an
exponential covariant derivative by setting

D

dt
w(t) = eUq(t)

p

d

dt
eUp

q(t)w(t) =

eUq(t)
p (ẇ(t)− Ep [ẇ(t)]) = ẇ(t)− Eq(t) [ẇ(t)] .

• Let us do now the computation in the mixture bundle. The curve is

t 7→ ζ(t) = (q(t), η(t)) ∈ ∗S E (µ) = 1S0 E (µ)

and the mixture covariant derivative as

D

dt
η(t) = mUq(t)

p

d

dt
mUp

q(t)η(t) =

p

q(t)

1

p
(q̇(t)η(t) + q(t)η̇(t)) =

⋆
q(t)η(t) + η̇(t) .



Mechanics IV

For each smooth curve in the full statistical bundle,

t 7→ (q(t), η(t),w(t)) ∈ 1S1 E (µ) ,

it holds

d

dt
⟨η(t),w(t)⟩q(t) =

〈
Dm

dt
η(t),w(t)

〉
q(t)

+

〈
η(t),

De

dt
w(t)

〉
q(t)

.

• Given a scalar field F : E (µ) → R the gradient of F is the section
q 7→ gradF (q) of the mixture bundle ∗S E (µ) such that for all
smooth curve t 7→ q(t) ∈ E (µ) it holds

d

dt
F (q(t)) = ⟨gradF (q(t)), ⋆

q(t)⟩q(t) .



Mechanics V

• Let be given a real function F : 1S1 E (µ)×D → R, where D a
domain of Rk . For a generic smooth curve

t 7→ (q(t), η(t),w(t), c(t)) ∈ 1S1 E (µ)×D ,

we want to write

d

dt
F
(
q(t), η(t),w(t), c(t)

)
=〈

gradF
(
q(t), η(t),w(t), c(t)

)
,

⋆
q(t)

〉
q(t)

+〈
D

dt
η(t), gradm F

(
q(t), η(t),w(t), c(t)

)〉
q(t)

+〈
grade F

(
q(t), η(t),w(t), c(t)

)
,
D

dt
w(t)

〉
q(t)

+

∇F
(
q(t), η(t),w(t), c(t)

)
· ċ(t) ,



Mechanics VI

where the four components of the gradient are

1S1 E (µ)×D ∋ (q, η,w , c) 7→


(q, gradF

(
q, η,w , c

)
) ∈ ∗Sq E (µ)

(q, gradm F
(
q, η,w , c

)
) ∈ Sq E (µ)

(q, grade F
(
q, η,w , c

)
) ∈ ∗Sq E (µ)

(q,∇F
(
q, η,w , c

)
) ∈ E (µ)× Rk



Mechanics VII

In the total derivative,

1. gradF
(
q, η,w , c

)
is the natural gradient of

q 7→ F (q,Uq
pζ,Uq

pv , c) ,

that is, with the representation in p-chart

Fp(u, ζ,w , c) = F (ep(u),U
ep(u)
p ζ,Uep(u)

p v , c) ,

it is defined by

⟨gradF (q, ζ,w , c), ⋆
q⟩q = d1Fp(u, ζ,w , c)

[
Up

q
⋆
q
]
, (q,

⋆
q) ∈ S E (µ) ;

2. gradm F
(
q, η,w , c

)
and grade F

(
q, η,w , c

)
are the fiber gradients;

3. ∇F
(
q, η,w , c

)
is the Euclidean gradient w.r.t. the last variable.



Mechanics VIII

• The dually affine geometry of the statistical bundle is naturally well
suited for describing the dynamics of probability densities in a
Lagrangian and Hamiltonian formalism.

• The Lagrangian formulation of mechanics derives the fundamental
laws of force balance from variational principles. In our context, the
exponential model E (µ) corresponds to the configuration space,
while the statistical bundle is associated to the velocity phase space.

• For a given smooth curve q : [0, 1] ∋ t 7→ q(t) in E (µ) and its lift
t 7→ (q(t),

⋆
q(t)) ∈ S E (µ), we introduce a generic Lagrangian

function
L(q(t),

⋆
q(t)) : S E (µ)× [0, 1] → R

and define an action as the integral of the Lagrangian along the
curve over the fixed time interval [0, 1],

q 7→ A(q) =

∫ 1

0

L(q(t),
⋆
q(t), t) dt .



Mechanics IX

• Hamilton’s principle states that this function has a critical point at
a solution within the space of curves on E (µ). If q is an extremal of
the action integral, then

D

dt
grade L(q(t),

⋆
q(t), t) = grad L(q(t),

⋆
q(t), t) .

• At each fixed density q ∈ E (µ), and each time t, the partial
mapping Sq E (µ) ∋ w 7→ Lq,t(w) = L(q,w , t) is defined on the
vector space Sq E (µ), and its gradient mapping in the duality of
∗Sq E (µ)× Sq E (µ) is w 7→ grade L(q,w , t). The standard
argument involving the Legendre transform provides the intrinsic
form of the Hamilton equations.

• The Hamiltonian is

H(q, η, t) =
〈
η, (grade Lq,t)

−1(η)
〉
q
− L(q, (grade Lq,t)

−1(η))



Mechanics X

• If t 7→ q(t) a solution of Euler-Lagrange equation, the curve
t 7→ ζ(t) = (q(t), η(t)) in ∗S E (µ), where
η(t) = grade L(q(t),

⋆
q(t), t) is the momentum. The mixture bundle

∗S E (µ) then plays the role of the cotangent bundle in mechanics.

• The momentum curve satisfies the Hamilton equations,
D

dt
η(t) = − gradH(q(t), η(t), t)

⋆
q(t) = gradm H(q(t), η(t), t).

Moreover,

d

dt
H(q(t), η(t), t) =

∂

∂t
H(q(t), η(t), t) .

12
We refer to basic facts as presented in V. I. Arnold. Mathematical methods of classical mechanics, volume 60

of Graduate Texts in Mathematics. Springer-Verlag, New York, 1989. Translated from the 1974 Russian original by
K. Vogtmann and A. Weinstein, Corrected reprint of the second (1989) edition



Example of Mechanics I

• If L(q,w) = 1
2 ⟨w ,w⟩q is our Lagrangian, then via Legendre

transform, we obtain the Hamiltonian H(q, η) = 1
2 ⟨η, η⟩q.

• The gradients are

gradH(q, η) = −1

2

(
η2 − Eq

[
η2
])

gradm H(q, η) = η

grad L(q,w) =
1

2
(w2 − Eq

[
w2
]
)

grade L(q,w) = w

• For
⋆
q = w ∈ ∗S E (µ), the Euler-Lagrange equation is

D

dt
⋆
q(t) =

1

2

(
⋆
q(t)2 − Eq(t)

[
⋆
q(t)2

])
,

where the covariant derivative is computed in ∗S E (µ), that is,
D
dt

⋆
q(t) = q̈(t)/q(t).



Example of Mechanics II
• In terms of the exponential acceleration

∗∗
q(t) = q̈(t)/q(t)−

(
⋆
q(t)2 − Eq(t)

[
⋆
q(t)2

])
, the Euler-Lagrange

equation reads

∗∗
q(t) = −1

2

(
(
⋆
q(t))2 − Eq(t)

[
(
⋆
q(t))2

])
,

• The Hamilton equations are
D

dt
η(t) =

1

2

(
η2 − Eq

[
η2
])

⋆
q(t) = η(t)

,

with the covariant derivative again computed in ∗S E (µ).

• The conserved energy is

H(q(t), η(t)) =
1

2
⟨⋆
q(t),

⋆
q(t)⟩q(t) =

1

2
E1

[
q̇(t)2

q(t)

]
.

which reflects in the conservation of the Fisher information.


