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Abstract

Combinatorial optimization is the maximization of a real function
defined on a finite space f : ⌦! R. This problem is reduced to a
continuous optimization problem by considering the relaxed
function F (p) = Ep [f ], where p is a positive density in a statistical
model M on ⌦. I will present results from a joint work in progress
with Luigi Malagò (Università Statale di Milano). This work
expands previous works in Optimization by L. Malagò et al., where
the geometry of exponential families is show to provide a suitable
setting for model based methods in Combinatorial Optimization
under a Black Box assumption on the function f . Some basic tools
of Algebraic Design of Experiments are used.
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• Luigi Malagò, Matteo Matteucci, and Giovann Pistone. Towards the geometry of estimation of distribution
algorithms based on the exponential family.

In Proceedings of the 11th workshop on Foundations of genetic algorithms, FOGA ’11, pages 230–242,
New York, NY, USA, 2011. ACM

• Luigi Malagò, Matteo Matteucci, and Giovanni Pistone. Natural gradient, fitness modelling and model
selection: A unifying perspective.

In IEEE Congress on Evolutionary Computation, pages 486–493. IEEE, 2013

• L. Arnold, A. Auger, N. Hansen, and Y. Ollivier. Information-Geometric Optimization Algorithms: A
Unifying Picture via Invariance Principles.

arXiv:1106.3708, 2011v1; 2013v2

Stochastic relaxation

• (⌦,F , µ) (metric) measure space, P> (strictly) positive probability
densities.

• An open statistical model (M, ✓,B) is a parameterized subset of
P>, that is M ⇢ P> and s : M! B , where s is a one-to-one
mapping onto an open subset of a Banach space B .

• If f : ⌦! R is a bounded continuous function, the mapping
M 3 p 7! Ep [f ] is a Stochastic Relaxation SR of f .

• Ep [f ] < sup!2⌦ f (!) for all p 2M if f is not constant, but
supp2M Ep [f ] = sup!2⌦ f (!) if there exist a probability measure ⌫
in the weak closure of M · µ whose support is contained in the set
of maximizing points of f , {! 2 ⌦ : f (!) = sup!2⌦ f (!)}.

• A SR optimization method is an algorithm to produce a sequence
pn 2M, n 2 N, such that limn!1 Epn [f ] = sup!2⌦ f (!).

• Such algorithms are best studied in the framework of Information
Geometry IG, that is the di↵erential geometry of statistical models.



SR on an exponential family

• The exponential family q✓ = exp
⇣

Pd
j=1 ✓jTj �  (✓)

⌘

· p is a

statistical model M = {q✓} and parameterization � : q✓ 7! ✓ 2 Rd .

• 1.  (✓) = log
�

Ep

⇥

e✓·T
⇤�

is convex, lower semi-continuous;
2.  is analytic on the interior U the proper domain;
3. r (✓) = E✓ [T ], Hess (✓) = Var✓ (T ).
4. U 3 ✓ 7! r (✓) = ⌘ 2 N is one-to-one, analytic, monotone;

N is the interior of the marginal polytope, i.e. the convex set
generated by {T (!) : ! 2 ⌦};

• The SR ✓ 7! E✓ [f ] is well posed i↵ the border set @M contains at
least one point of argmax f . A su�cient condition is �T (!) 2 @M
for all ! 2 ⌦

• The gradient of the SR is

r(✓ 7! E✓ [f ]) = (Cov✓ (f ,T1) , . . . ,Cov✓ (f ,Td))

which suggests to take the ✓-MS approximation of f on
Span (T1, . . . ,Td) as direction of steepest ascent.

• This ideas prompt for a systematic development of the geometric
picture of statistical models.

Information Geometry
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American Mathematical Society, Providence, RI, 2000.
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PhD thesis, Dottorato in Matematica, Università di Milano, 2002

• Alberto Cena and Giovanni Pistone. Exponential statistical manifold.
Ann. Inst. Statist. Math., 59(1):27–56, 2007
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EDA

• Estimation of Distribution is a model-based optimization algorithm.

• Input: N,M . population size, selected population size
Input: M = {p(x ; ⇠)} . parametric model
1: t  0
2: P t = InitRandom() . random initial population
3: repeat
4: P t

s = Selection(P t ,M) . select M samples
5: ⇠t+1 = Estimation(P t

s ,M) . opt. model selection
6: P t+1 = Sampler(⇠t+1,N) . N samples
7: t  t + 1
8: until StoppingCriteria()

SNGD

• Stochastic Natural Gradient Descent is a ST algorithm that requires
the estimation of a gradient.

• Input: N,� . population size, learning rate
Optional: M . selected population size (default M = N)
1: t  0
2: ✓t  (0, . . . , 0) . uniform distribution
3: P t  InitRandom() . random initial population
4: repeat
5: P t

s = Selection(P t ,M) . opt. select M samples

6: brE[f ] dCov(f ,Ti )mi=1 . empirical covariances

7: b

I  [dCov(Ti ,Tj)]mi,j=1 . {Ti (x)} may be learned

8: ✓t+1  ✓t � �bI�1
brE[f ]

9: P t+1  GibbsSampler(✓t+1,N) . N samples
10: t  t + 1
11: until StoppingCriteria()



A toy example I

•
f (x1, x2) = a0 + a1x1 + a2x2 + a12x1x2, x1, x2 = ±1,
a0, a1, a2, a12 2 R.

•
f is a real random variable on the sample space ⌦ = {+1,�1}2
with the uniform probability �.

•
X1,X2 : ⌦! ±1 generate an orthonormal basis 1,X1,X2,X1X2 of
L

2(⌦,�) and f is the general form of a real random variable on such
a space.

• P> is the open simplex of positive densities on (⌦,�), E is a
statistical model.

The relaxed mapping F : E!R,

F (p) = Ep [f ] = a0 + a1Ep [X1] + a2Ep [X2] + a12Ep [X1X2]

is strictly bounded by the maximum of f , Ep [f ] < maxx2⌦ if f is not
constant.

A toy example II

• We are looking for a sequence pn, n 2 N, such that
Epn [f ]! maxx2⌦ f (x) as n!1.

• The existence of such a sequence in a nontrivial condition for the
model E .

This condition is satisfied by the independence model, when we can write

F (⌘1, ⌘2) = a0 + a1⌘
1 + a2⌘

2 + a12⌘
1⌘2, ⌘i = Ep [Xi ] ,

• Not all functions on P> are extremised on the vertices. For example
the entropy, or the polarization measure

p 7!
X

!2⌦

p(!)2(1� p(!))

Model, border Border: polarization



F (⌘1, ⌘2) = ⌘1 + 2⌘2 + 3⌘1⌘2 rF (⌘1, ⌘2) = (1 + 3⌘2, 2 + 3⌘1)

F and rF Integral curves



rF and integral curves Issues/Actions

Issues

issue 1 There are critical points in the interior of [�1,+1]2.

issue 2 The gradient points in the right direction outside
[�1,+1]2.

Actions

action 1 Order according decreasing e↵ects.

action 2 Use a modified gradient.

Y1 = X1X2, Y2 = X2, Y1Y2 = X1

1 X1 X2 X1X2 Y1 Y2 Y1Y2

1 1 1 1 1 1 1 1 1 1
2 �1 1 1 �1 1 �1 �1 1 �1
3 1 �1 1 1 �1 �1 �1 �1 1
4 �1 �1 1 �1 �1 1 1 �1 �1

Same function

X1 + 2X2 + 3X1X2 = 3Y1 + 2Y2 + Y1Y2

New model
Y1 = X1X2, Y2 = X2 independent

• Emanuele Corsano, Davide Cucci, Luigi Malagò, and Matteo Matteucci. Implicit model selection based on
variable transformations in estimation of distribution.

In LION, pages 360–365, 2012

• Davide Cucci, Luigi Malagò, and Matteo Matteucci. Variable transformations in estimation of distribution
algorithms.

In PPSN (1), pages 428–437, 2012

F (⇣1, ⇣2) = 3⇣1 + 2⇣2 + ⇣1⇣2



rF (⇣1, ⇣2) = (3 + ⇣2, 2 + ⇣1) Y variables, optimization

Natural gradient

E✓ [(X1 + 2X2 + 3X1X2)X1] = 1 + 2⌘1⌘2 + 3⌘2

E✓ [X1 + 2X2 + 3 + X3] E✓ [X1] = ⌘21 + 2⌘1⌘2 + 3⌘21⌘2

Cov✓ (X1 + 2X2 + 3X1X2,X1) = (1� ⌘21)(1 + 3⌘2)

E✓ [(X1 + 2X2 + 3X1X2)X2] = ⌘1⌘2 + 2 + 3⌘1

E✓ [X1 + 2X2 + 3 + X3] E✓ [X2] = ⌘1⌘2 + 2⌘22 + 3⌘1⌘
2
2

Cov✓ (X1 + 2X2 + 3X1X2,X2) = (1� ⌘22)(2 + 3⌘1)

erF (⌘1, ⌘2) =
⇥

(1� ⌘21)(1 + 3⌘2), (1� ⌘22)(2 + 3⌘1)
⇤

= rF (⌘1, ⌘2)


1� ⌘21 0
0 1� ⌘22

�

erF (⌘1, ⌘2) =
�

(1� ⌘21)(1 + 3⌘2), (1� ⌘22)(2 + 3⌘1)
�



rF vs erF Integral curves from erF

erF flow vs rF flow IGO

• Other relaxation are possible.

• If � is a positive density, the function

f̃ : ⌦ 3 x 7! P� [f  f (x)]

has the same maximum as f , and

•
b

F : M 3 p 7! Ep

h

f̂

i

is a relaxation of f̂ .

•
f̂ is invariant under monotone transformations of the values of
f and it is a stochastic ordering measure..

• L. Arnold, A. Auger, N. Hansen, and Y. Ollivier. Information-Geometric Optimization Algorithms: A
Unifying Picture via Invariance Principles.
arXiv:1106.3708, 2011v1; 2013v2



IGO: F (⌘1, ⌘2) =
5
8 +

1
8⌘2 +

1
4⌘1⌘2 Charts I

• On the finite sample space ⌦, #⌦ = n, consider a set of
random variables B = {X1, . . . ,Xm} such that

P

J ↵jXj is
constant only if the ↵j ’s are zero, which implies, in turn, the
linear independence of B.

• We define V = Span (X1, . . . ,Xm) and

EV (p) =
n

q 2 P> : q / eUp,U 2 V
o

.

• As EV (q) = EV (p) if, and only if, q 2 EV (p) = EV , each
choice of a specific reference p is the chart centered at p

�p : exp

0

@

X

j

✓j eUp
Xj �  p(✓)

1

A · p 7! ✓,

where eUp is the centering at p.

Charts II

• The centering is a parallel transport on the tangent spaces of
the manifold:

eUp : V 3 U 7! U � Ep [U] 2 eUpV.

• ✓ = I

�1
B (p)Ep [U

eUp
X ], where

IB(p) = [Covp (Xi ,Xj)]ij = Ep

⇥

XX

0⇤� Ep [X ] Ep

⇥

X

0⇤ (1)

is the Fisher matrix of the basis B = {X1, . . . ,Xm}.

Gradients I

Given a function � : EV ! R let �p = � � ep, ep = ��1
p , its representation

in the chart centered at p:

EV
� // R

Rm

ep

OO

�p

>>

The derivative of ✓ 7! �p(✓) at ✓ = 0 along ↵ 2 Rm is

r�p(0)↵ = r�p(0)I�1
B (p)IB(p)↵ =

�

I

�1
B (p)r�p(0)0

�0
IB(p)↵ = gp(I

�1
B (p)r�p(0)0,↵).

The mapping er� : p 7! I

�1
B (p)(r�p(0))0 2 Rm is Amari’s natural

gradient.



Gradients II

TEV
(�p,�̇p) //

⇡

✏✏

R2m

⇡1

✏✏
EV �p

// Rm

TpEV
�̇p // Rm

IB(p)

✏✏
EV

r�(p)

OO

r�p(0)
// Rm

�̇p � r�(p) = I

�1
B r�p(0) = er�(p)

Levi-Civita connection

If DYV is the vector field on EV whose value at p has coordinates

�̇p(DYV (p)) = dVp(0)↵+
1

2
I

�1
B (p) (dIB,p(0)↵)Vp(0), ↵ = �̇p(Y (p)),

then

DY g(V ,W ) = g(DYV ,W ) + g(V ,DYW ),

�̇p (DWV (p)� DVW (p)) = �̇[V ,W ](p),

i.e. DYV is the metric covariant derivative.

• See VIII, §4 of Serge Lang. Di↵erential and Riemannian manifolds, volume 160 of Graduate Texts in
Mathematics.

Springer-Verlag, New York, third edition, 1995,

•
§5.3.2 of P.-A. Absil, R. Mahony, and R. Sepulchre. Optimization algorithms on matrix manifolds.

Princeton University Press, Princeton, NJ, 2008.

With a foreword by Paul Van Dooren.

• L. Malagò, G. Pistone, work in progress on the Newton method.


