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Abstract: When sampling independent observations drawn from the uniform distribution on the unit
interval, as the sample size gets large the asymptotic behaviour of both the empirical distribution function
and empirical quantile function is well known. In this article we study analogous asymptotic results for
the function that is obtained by composing the empirical quantile function with the empirical distribution
function. Since the former is the generalized inverse of the latter, the result will approximate the identity
function. We define a scaled and centered version of this function—the empirical identity process—and
prove it converges to a highly irregular limit process whose trajectories are not right-continuous and
impossible to study using standard probability in metric spaces. However, when this process is integrated
over time, and appropriately rescaled and centered, it becomes possible to define a functional limit theorem
for it, which then converges to a randomly pinned Brownian motion. By applying these theoretical results, a
new goodness-of-fit test is derived. We demonstrate that this test is very efficient when it is applied to data
which come from a multimodal or mixture distribution, like the classic Old Faithful dataset. The Canadian
Journal of Statistics 46: 656–672; 2018 © 2018 Statistical Society of Canada
Résumé: Le comportement de la fonction de répartition empirique et de la fonction quantile empirique
est bien connu lorsque celles-ci sont calculées avec un nombre croissant d’observations indépendantes
tirées uniformément de l’intervalle unité. Les auteurs étudient des résultats asymptotiques similaires pour
la fonction obtenue par la composée de la fonction quantile empirique avec la fonction de répartition
empirique. Puisque la première est l’inverse généralisée de la deuxième, leur composée approximera la
fonction identité. Les auteurs définissent une version centrée et normalisée de cette fonction–le processus
identité empirique–et prouvent qu’il converge vers un processus limite très irrégulier dont les trajectoires
sont discontinues à droite et impossibles à étudier avec les probabilités habituelles dans un espace métrique.
Toutefois, lorsque ce processus est intégré dans le temps et qu’il est centré et réduit de façon appropriée, il
devient possible de définir un théorème limite fonctionnel qui converge vers un pont brownien. Les auteurs
exploitent ces nouveaux résultats théoriques afin de définir un nouveau test d’adéquation. Ils démontrent
que ce test est très efficace lorsqu’il est utilisé pour des données multimodales ou des mélanges, comme
pour le jeu de données classique du geyser Old Faithful. La revue canadienne de statistique 46: 656–672;
2018 © 2018 Société statistique du Canada

1. INTRODUCTION

The asymptotic behaviour of both the uniform empirical process and the uniform quantile process
is well known, for example, Csörgő & Révész (1981), Csörgő (1983), Shorack & Wellner (1986).
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Such processes are defined as centered and scaled versions of the empirical distribution function
and the empirical quantile function, respectively. To the best of our knowledge this article
is the first investigation of the process that results from applying the empirical quantile
function to the empirical distribution function itself. Intuitively, such a back-and-forth operation
approximates the identity function. We introduce a centered and scaled version of this process
which we define as the empirical identity process (EIP). The asymptotic properties of the EIP
are somewhat unexpected; the EIP converges in distribution to a white noise process whose
finite-dimensional distributions (FDD) are products of exponential or Laplace distributions; see
the discussion following Theorem 1. This limiting process is very irregular and, in particular, is
not right-continuous. It is therefore impossible to build a proper weak convergence theory in any
metric space. In the hope of achieving regularity, we study the integral of the EIP. The resulting
limit theorem is a functional version of a classical result by Moran (1947) on the asymptotic
behaviour of the sum of squared spacings.

Our results provide some unexpected asymptotic properties of a process related to the uniform
empirical and quantile functions. Moreover, we demonstrate that these asymptotic results have
interesting applications from a statistical point of view. Based on the asymptotics of the EIP, we
propose a new test statistic that can be used in goodness-of-fit problems. This new methodology
is not always superior to other methods based on the empirical distribution function, but it
performs better when the true distribution is multimodal or a mixture. Using simulations, we
identify cases in which this new statistic outperforms existing alternatives; we also provide a
relevant application to the popular Old Faithful dataset.

2. EMPIRICAL IDENTITY PROCESSES AND ASYMPTOTIC RESULTS

Let U1,… ,Un be independent random variables from a uniform distribution on [0,1]. Let
Un, 1 ≤ · · ·≤ Un, n be their order statistics, together with Un, 0 = 0 and Un, n + 1 = 1. Let 𝔽n(t) =
n−1 ∑n

i=1(Ui ≤ t), 0 ≤ t ≤ 1, denote the empirical distribution function and ℚn(u) = inf{t ∈
[0, 1] ∶ 𝔽n(t) ≥ u} the empirical quantile function, 0 < u ≤ 1; ℚn(⋅) is the left-continuous
generalized inverse function of 𝔽n(⋅).

We next define the lower empirical identity function as

RL
n(t) = Un,n𝔽n(t) =

{
0 if 0 ≤ t < Un,1

ℚn
(
𝔽n (t)

)
if Un,1 ≤ t ≤ 1 ,

the upper empirical identity function as

RU
n (t) = Un,n𝔽n(t)+1 =

{
ℚn

(
𝔽n (t) +

1
n

)
if 0 ≤ t < Un,n

1 if Un,n ≤ t ≤ 1 ,

and the empirical identity function as their average

Rn(t) =
RL

n(t) + RU
n (t)

2
.

The trajectories of Rn(t), RL
n(t), and RU

n (t) for a specific sample of size n = 2 are shown in
Figure 1. By the Glivenko-Cantelli theorem, as n → ∞, the three random sequences, Rn(t), RL

n(t),
and RU

n (t) converge almost surely in the uniform norm to the identity function. It is therefore
interesting to study their second-order asymptotics by defining the lower and upper empirical
identity process

YL
n (t) = (n + 1){RL

n(t) − t} and YU
n (t) = (n + 1){RU

n (t) − t},
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FIGURE 1: Trajectories of the EIP (solid), of the lower EIP (dashed) and of the upper EIP (dotted) with
n = 2, U2,1 = 1/6 and U2,2 = 4/6.

and the empirical identity process

Yn(t) = (n + 1){Rn(t) − t} = {YL
n (t) + YU

n (t)}∕2,

for 0 ≤ t ≤ 1. We use the scaling factor n + 1 instead of n to make notation in the following
sections simpler.

Theorem 1. For any positive integer k and points 0 < u1 < · · ·< uk < 1, the random vec-
tor (YU

n (u1),… ,YU
n (uk),−YL

n (u1),… ,−YL
n (uk)) converges in distribution to a vector of 2k

independent exponential random variables, as n →∞.

In other words, the joint FDD of the bivariate process (YU
n (⋅),−YL

n (⋅)) converge to those of
two independent exponential variates. As a consequence, for the EIP itself we can conclude that

Corollary 1. For any positive integer k and points 0 < u1 < · · ·< uk < 1, as n →∞ the
random vector (Yn(u1),… ,YU

n (uk)) converges in distribution to a vector of k independent
random variables with the Laplace density f (z) = exp (−2| z| ).

The proof of Theorem 1 is long and requires two preliminary lemmas; it is sketched in the
appendix. A process with independent FDD cannot be right-continuous; see the criterion in
Theorem 13.6 of Billingsley (1999). Therefore, the theory of weak convergence in D(0, 1), the
usual space of cadlag paths, does not apply. The resulting conclusion is that such limit processes
are fairly intractable objects and for any statistical application we need to regularize them.

3. THE INTEGRATED EMPIRICAL IDENTITY PROCESS

The anti-derivative of a function is always more regular than the function itself. Therefore, in the
hope of obtaining a more regular limit process, it is natural to look at the asymptotic behaviour
of the integrals of the processes defined in the previous section.
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Since it turns out that the asymptotic behaviours of the lower and upper EIPs are
equivalent—see Section 3.2 for further details—it is simpler and notationally convenient
to study only the integrated lower EIP,

In(t) = − ∫
t

0
YL

n (u)du = (n + 1) ∫
t

0
{u − RL

n(u)}du, t ∈ [0, 1] , (1)

which hereafter we simply call the integrated process; the minus sign makes it non-negative.

3.1. The Integrated Process and Its Relation to Spacings
A simple geometric inspection of Figure 1 shows that the integrated process is strictly related to
the uniform spacings, which are defined as

Dn,i = Un,i − Un,i−1, i = 1,… , n + 1. (2)

We obtain

In(t) = (n + 1) ∫
t

0
{u − RL

n(u)} du

= (n + 1)
nFn(t)∑

i=1
∫

Un,i

Un,i−1

(u − Un,i−1)du + (n + 1) ∫
t

Un,nFn(t)

{u − Un,nFn(t)}du

= n + 1
2

nFn(t)∑
i=1

D2
n,i +

n + 1
2

{t − RL
n(t)}

2. (3)

In particular, at t = 1 the integrated process equals

In(1) = (n + 1) ∫
1

0
{u − RL

n(u)} du = n + 1
2

n+1∑
i=1

D2
n,i.

This is the well-known Greenwood statistic, for which a classical theorem due to Moran (1947)
established convergence to normality in the following way:

Theorem 2. The following convergence in law holds: n→∞,

Mn =
√

n + 1{In(1) − 1} =
√

n + 1

(
n + 1

2

n+1∑
i=1

D2
n,i − 1

)
L
→N(0, 1). (4)

Theorem 2 refers to the convergence of In(1), the value of the integrated process when
t = 1. More can be said about the convergence of In(⋅) as a process in the functional
space D(0,1). In other words, we are in a position to extend Moran’s theorem into a func-
tional version. To do so, we need some technical steps which involve strong approximation
theorems. The rest of this section can be skipped by those not interested in the partic-
ular probabilistic details; the important result is Theorem 4, which is found in the next
subsection.
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Recall first the following strong approximation results of Aly (1983, 1988):

Theorem 3. There exists a probability space on which both

• a two-dimensional Wiener process (W1(⋅), W2(⋅)) with zero mean and autocovariance matrix

𝔼
[(

W1 (s)
W2(s))

)
(W1(t)W2(t))

]
= min{s, t}

(
1 4
4 20

)
, t, s > 0,

• and a vector {Dn, i}i = 1,… ,n + 1 of random variables of arbitrary size n with the same law as
the uniform spacings defined in (2)

are defined, such that the two processes

En(t) =
⎧⎪⎨⎪⎩

0 if 0 ≤ t < 2
n+1√

n + 1

{
(n + 1)

⌊(n+1)t⌋∑
i=1

D2
n,i − 2t

}
if 2

n+1
≤ t ≤ 1,

Vn(t) =
1√

n + 1
{W2((n + 1)t) − 4tW1(n + 1)} , 0 ≤ t ≤ 1, (5)

are so close to each other that the following condition holds: for every 𝜀 > 0 there are constants
A, B such that

P

{
sup

0≤t≤1
|En (t) − Vn(t)| > A

log(n + 1)√
n + 1

}
≤ B(n + 1)−𝜀. (6)

Theorem 3 was first stated in Aly (1983), but a minor step of the proof was not fully justified.
This led the author to write Aly (1988), which provided a rigorous proof of Theorem 3 based on
a multivariate Hungarian construction due to Einmahl (1989). However, the rate of convergence
in Einmahl (1989) is suboptimal and not fast enough to allow for the rate log(n + 1)∕

√
n + 1

found in (6). Theorem 3 is then provided in Aly (1988) with a rate of convergence that is slowed
to {log(n + 1)}2∕

√
n + 1. We here conclude that the statement in Aly (1983) is actually correct.

The reason is that a stronger multivariate Hungarian construction is now available that allows us
to prove Theorem 3 using the same proof that appears in Aly (1988), provided Zaitsev (1998)
is cited in place of Einmahl (1989). The process Vn(⋅) defined in (5) is constructed by applying
such a bivariate Hungarian construction. Different processes arise for different choices of n, but
their law is actually the same irrespective of n, since they are all centered Gaussian processes
with the covariance function

𝔼{Vn(t)Vn(s)} = 20min(t, s) − 16st.

Moreover, each process Vn has the same law as the process

V(t) = 2
√

5W(t) − 2(
√

5 − 1)tW(1), 0 ≤ t ≤ 1, (7)

where W(⋅) is a standard one-dimensional Wiener process. A consequence of Theorem 3 and of
the previous remarks is the following corollary:

Corollary 2. The process En(⋅) converges weakly in D(0, 1) to the process V (⋅) defined in (7).

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs



2018 THE EMPIRICAL IDENTITY PROCESS 661

3.2. A New Functional Version of Moran’s Theorem
Since the statistic Mn introduced in (4) equals En(1)/2, the previous corollary may already be
considered a functional version of Moran’s theorem. However, it involves the process En(⋅) and
not the process In(⋅) which is of interest here. We therefore need another functional version of
Moran’s theorem which provides the asymptotics for In(⋅) directly.

Theorem 4. The process 2
√

n + 1{In(⋅) − 𝔽n(⋅)} converges weakly in D(0, 1) to the Gaussian
process V (⋅) defined in (7).

A full proof of the theorem is given in the appendix. Due to the continuous mapping theorem
and to the continuity of the supremum operator and of the absolute value, we obtain the following
corollary, which we will use below to construct a new goodness-of-fit test.

Corollary 3. The random variable 2 sup0≤t≤1

√
n + 1 ∣ IL

n (t) − 𝔽n(t) ∣ converges weakly to
sup0 ≤ t ≤ 1 ∣ V(t)∣ as n → ∞.

At the beginning of Section 3 we introduced the integrated process by focusing on the integral
of the lower EIP. However it is legitimate to consider what would happen if we instead used the
integral of the upper EIP, that is,

IU
n (t) = ∫

t

0
YU

n (u)du = (n + 1) ∫
t

0
{RU

n (u) − u}du, t ∈ [0, 1],

or if we considered the joint distribution of these two processes. To provide a satisfactory answer a
more formal proof would be required, but it can be seen from Figure 1 that the difference between
In(t) and IU

n (t) is uniformly bounded by (n + 1)/2 times the squared maximal spacing. Therefore
we can apply the classical results in Slud (1978) concerning the almost sure rate of convergence
to zero of the maximal spacing to show that the difference between

√
n + 1{In(t) − 𝔽n(t)} and√

n + 1{IU
n (t) − 𝔽n(t)} vanishes almost surely as the sample size tends to infinity. Consequently,

the pair (
√

n + 1{In(t) − 𝔽n(t)},
√

n + 1{IU
n (t) − 𝔽n(t)}) converges weakly to two identical copies

of the process V(⋅) identified in (7).

3.3. Characterization of the Limit Process and the Asymptotic Distribution of the
Maximum
To use Corollary 3 we need to compute the exact distribution of the supremum of the limit
process. That required result is identified below in Theorem 5.

Let W(⋅) be standard Brownian motion and B(t) = W(t) − tW(1), t ≥ 0 be a Brownian
bridge. For every t, B(t) is independent of W(1) and it has the distribution of Brownian
motion which is constrained to visit zero (or ‘‘pinned to 0’’) at time 1. A process B(t) + ty,
t ≥ 0 also represents Brownian motion pinned to y when t = 1, cf. Revuz & Yor (1999).
Therefore, the limit process V(⋅) that we identified in (7) admits the equivalent representation

V(t) = 2
√

5
{

B (t) + t W(1)√
5

}
, t ≥ 0, which constitutes Brownian motion, scaled by a factor

2
√

5, and which at t = 1 is pinned to a random position W(1)∕
√

5. Moreover, we can derive the
two-sided maximal probability distribution for V(t) from that of the pinned Brownian motion;
see either Beghin & Orsingher (1999), Equation 4.12 or Borodin & Salminen (2002), Part II,
Chapter 1, Equation 1.15.8(1).
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Theorem 5. The distribution function of the maximum of the absolute value of the stochastic
process V(⋅) is given by

ℙ{ sup
0≤t≤1

|V(t) | < b} =
∞∑

h=−∞
(−1)he−

4
50 h2b2

. (8)

A detailed proof of this result is given in the appendix.

4. A NEW GOODNESS-OF-FIT TEST

Let X1,… ,Xn be a sample of independent continuous random variables, with possibly different
distributions. Under the null hypothesis H0 that the distribution functions of the Xi are some
given Fi(x), i = 1,… ,n, the transformed sample {Ûi = Fi(Xi)}, i = 1,… , n is composed of
independent uniform random variables. The integrated process of the transformed sample can be
used to construct a new goodness-of-fit test of H0 in the same spirit as the Kolmogorov–Smirnov
goodness-of-fit test.

4.1. A Statistic Derived From the Supremum of the Integrated EIP

Let 𝔽n(t) be the empirical distribution function of the transformed sample and let În(t) be the
related integrated process that we first identified in (1). We now define the test statistic

dn = 2 sup
0≤t≤1

√
n + 1 ∣ În(t) − 𝔽n(t) ∣ . (9)

Under H0, the sequence dn converges weakly to sup0 ≤ t ≤ 1 ∣ V(t)∣, whose exact distribution is
identified in (8). Notice that the distribution of dn is the same, irrespective of the distributions
Fi(x) of the individual sample observations.

Now define a new goodness-of-fit test which rejects H0 if the value of dn exceeds a critical
value. An asymptotic critical value can be derived by numerically inverting (8), for example
the 95th percentile of sup0 ≤ t ≤ 1 ∣ V(t) ∣ equals b = 6.790494. Numerical simulations show that
the convergence is slow. For intermediate values of n, say 100, the 0.95 quantiles of dn are not
very well approximated by the asymptotic values, but suitable values can easily be derived using
Monte Carlo methods. The results of such computations are summarized in Table 1.

The critical values displayed in Table 1 were obtained by simulating from the uniform
distribution. There might be some loss in accuracy when the sample data are generated from
other distributions and transformed through the cumulative distribution function. To check for
such a possibility we performed the following consistency check: we tested the goodness-of-fit
with respect to the true distribution of the data, looking for the rate of occurrence of type I errors;
see the source code provided in the Supplementary material. We do not report the observed
values here, but did not detect any relevant discrepancies with respect to the nominal significance
level of 5%.

4.2. Numerical Simulations
We carried out various numerical experiments to benchmark the performance of these new tests
relative to other well-known goodness-of-fit tests such as that based on the original statistic Mn
of Moran (1947), that is, (4). Other possible competitors are the classical Kolmogorov–Smirnov
test, which is based on the statistic

Dn = sup
t

√
n ∣ 𝔽n(t) − F(t) ∣= sup

t

√
n ∣ 𝔽n(t) − t ∣,
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TABLE 1: Approximate values of the 0.95 quantiles of the distributions of dn, Mn, An and Dn for different
sample sizes n, computed by Monte Carlo simulations. The values in the final column are the asymptotic

ones.

Sample size, n

Statistic 30 50 100 200 272 ∞

dn 5.857 6.127 6.349 6.493 6.536 6.790

Mn 1.449 1.559 1.637 1.679 1.684 1.645

An 2.493 2.497 2.495 2.494 2.490 2.492

Dn 1.322 1.332 1.341 1.346 1.346 1.358

and the Anderson–Darling test, which belongs to the Cramer–von Mises family of tests and is
based on the statistic

An = n ∫
1

0
w(u){𝔽n(u) − u}2du,

which, with the weight function w(x) = 1/{x(1 − x)}, is designed to identify possible departures
from H0 in the tails.

For goodness-of-fit tests of this kind, the alternative hypothesis is completely nonparametric.
For data not generated according to the null distribution, the power of the test is strongly
influenced by the choice of the alternative distribution from which sampled observations arise.
For example, if we test the normality of a sample which was generated from a Student-t
distribution with the same mean, we expect a test based on An to have greater power than one
based on Dn due to the differences in the tails between the null and alternative distributions.

Now, if the dataset is generated from a mixture of two normal distributions having the same
variance 𝜎2 but different means 𝜇1 and 𝜇2, we expect that a test based on the empirical distribution
may not easily find significant discrepancies between the data and a normal distribution with
mean equal to a linear combination of 𝜇1 and 𝜇2, and variance somewhat larger then 𝜎2, for
example, the variance of the mixture. However, a test based on the spacings, such as the one
using dn, could exhibit greater power. The intuitive justification is that the gap in the regularized
data between the two models would easily give rise to some large spacings that could make dn
significantly larger than is likely to arise in the uniform case.

We therefore checked the power of the various tests via simulation in situations where the
sample data were generated using mixture distributions. Our purpose was, first, to highlight
situations where dn performs better than competing goodness-of-fit tests. For completeness, we
also studied a second set of examples involving less favourable conditions.

In all cases we evaluated the estimated power of the test via simulation using the ratio of the
number of rejections and the number of simulated samples, since the distribution of the observed
sample was always different from the distribution under the null hypothesis.

All numerical experiments were carried out using the R environment for statistical computing;
see R Core Team (2017). We used built-in functions to generate samples and to compute the
value of the test statistic Dn. For An we relied on the goftest package, whereas to compute Mn
and dn we wrote our own source code. All of our R scripts have been included as Supplementary
material in order to ensure reproducibility and to allow interested readers to try other scenarios
as well.

DOI: 10.1002/cjs The Canadian Journal of Statistics / La revue canadienne de statistique
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We carried out Monte Carlo evaluations of the 0.95 quantiles of the null distributions for
the different test statistics using 106 uniform samples of lengths 30, 50, 100, 200 and 272,
respectively. These simulated values were then used as critical values for the tests, in order to
provide a fair comparison of the methodologies. The various quantiles that we obtained and
subsequently used are summarized in Table 1. Note that while the quantiles of An and Dn are
already very close to their asymptotic values when n = 30, the same statement is not true for dn
and Mn; their convergence with respect to sample size was much slower.

We next evaluated the power of the different tests for selected examples. In particular, we
chose a first set of examples whose common feature is that the sample data originated from one
of the following mixture distributions, while the null hypothesis specified that they arose from a
single, common source:

• The null hypothesis specified that our sample arose from the standard normal distribution.
We generated the 10,000 simulated samples, each of size 100, from a mixture of two
normal distributions with equal weights, a common standard deviation 0.45 and means 0.88
and −0.88. We chose these particular values so that the mixture distribution would have
an approximate mean and variance of zero and one, respectively. We call this alternative
distribution a symmetric normal mixture.

• The null hypothesis specified that our sample arose from the standard normal distribution.
We generated the 10,000 simulated samples, each of size 30, from a mixture of two
normal distributions. The weights of the mixture were p1 = 1/5 and p2 = 4/5, the means
were 𝜇1 = 1.68 and 𝜇2 = 0.42, and the standard deviations were 𝜎1 = 0.2 and 𝜎2 = 0.6,
respectively. Again, we chose these particular values so that the mixture distribution would
have an approximate mean and variance of zero and one, respectively. We call this alternative
distribution an asymmetric normal mixture.

• The null hypothesis specified that our sample arose from the uniform distribution on (0, 1).
We generated the 10,000 simulated samples, each of size 100, from an equally weighted
mixture of two beta distributions with parameters (2, 8) and (8, 2), respectively.

The results of these various simulations are summarized in Table 2. Both the dn and Mn
statistics, which are based on spacings, outperformed the competing tests based on the empirical
distribution. Moreover, the test based on dn had the greatest estimated power in all three
examples.

Of course, no test is uniformly superior against all types of alternatives. In more standard
situations we would not expect our methodology to outperform the classical methods based on

TABLE 2: A first group of examples, involving mixtures. Estimated power of each test at a nominal
significance level of 5% for the goodness-of-fit test based on dn = 2sup0≤t≤1

√
n + 1 ∣ În(t) − 𝔽n(t) ∣

compared to the Moran test based on Mn, the Kolmogorov–Smirnov test based on Dn and the
Anderson–Darling test based on An.

Estimated power for nominal 5% significance

H0 True distribution dn Mn Dn An

Normal Symmetric normal mixture 0.698 0.644 0.618 0.521

Normal Asymmetric normal mixture 0.553 0.527 0.232 0.179

Uniform Beta mixture 0.858 0.788 0.792 0.753
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TABLE 3: A second set of examples, not involving mixtures. Estimated power of each test at a nominal
significance level of 5% for the goodness-of-fit test based on dn = 2sup0≤t≤1

√
n + 1 ∣ În(t) − 𝔽n(t) ∣

compared to the Moran test based on Mn, the Kolmogorov–Smirnov test based on Dn and the
Anderson–Darling test based on An.

Estimated power for nominal 5% significance

H0 True distribution dn Mn Dn An

Normal Cauchy 0.657 0.769 0.261 0.998

Normal Student t 0.346 0.383 0.252 0.982

Normal Shifted normal 0.554 0.207 0.732 0.824

the empirical distribution function. A second group of examples follows. The null hypothesis
was always that our sample arose from the standard normal distribution, while the various
alternatives that we considered were the following:

• the 10,000 simulated samples, each of size 100, were generated from a Cauchy distribution
with scale parameter 0.5;

• the 10,000 simulated samples of size 100 were generated from a Student’s t distribution with
two degrees of freedom;

• the 10,000 simulated samples, each of size 100, were generated from a normal distribution
with mean 0.3.

The results of these simulations are summarized in Table 3. Both the dn and Mn statistics,
based on spacings, were inferior to An, which had the greatest estimated power in all three
scenarios.

4.3. An Application to the Old Faithful Dataset
Old Faithful is a geyser in Yellowstone National Park, Wyoming, USA. For centuries it has been
erupting several times a day, spewing streams of hot water high into the sky. A popular dataset,
consisting of 272 observations on the waiting times between eruptions and the corresponding
durations of the eruptions, is distributed with R (R Core Team, 2017). We focus on the waiting
times, which exhibit a bimodal distribution, as illustrated in Figure 2. The data are in minutes
(integers), with a sample mean and standard deviation of 70.90 and 13.59, respectively. In order
to avoid ties we jittered the raw data by adding Gaussian noise with mean zero and standard
deviation 0.4. All tests reject normality of the sample if the null mean is fixed at 71 and the
null standard deviation at 14. We do not report P-values, but our source code is available in
the Supplementary material. If subsamples of size 50 are taken from the dataset, then rejection
of the same null hypothesis is no longer assured. We selected 10,000 subsamples, each of size
50, at random and ran all four goodness-of-fit tests on each subsample. The observed results are
summarized in Table 4. The test based on dn seems to be able to reject the null hypothesis of
normality with greater estimated power than each of the three alternative competitors.

5. CONCLUSIONS

We have defined the lower EIP and found that it converges to a process which has highly irregular
trajectories. In the hope of achieving regularity we studied the limiting behaviour of its integral,
obtaining Theorem 4 as our main result. We also computed the explicit limiting distribution of
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FIGURE 2: Observed histogram of the waiting times, in minutes, between successive eruptions of Old
Faithful.

TABLE 4: Observed results of the analysis of subsamples of the intervals, in minutes, between successive
eruptions of Old Faithful.

Total sample size 272

Number of subsamples 10,000

Size of subsamples 50

Rejections using dn 6,692

Rejections using Mn 6,282

Rejections using Dn 4,369

Rejections using An 2,976

the running supremum of the integrated process, which is identified in Theorem 5. This result
has an important statistical application, leading to a new goodness-of-fit test based on spacings;
see Section 4. A comparative study of our newly identified goodness-of-fit test with respect to
classic competitors using the Old Faithful dataset supports the conclusion that this new test is
useful for multimodal data, such as those arising from mixtures of distributions.

APPENDIX

In the following we provide proofs of the various results in the article.

Proof of Theorem 1. Theorem 1 states that the FDDs of the bivariate process (YU
n (⋅),−YL

n (⋅))
converge weakly to the FDDs of two independent exponential white noise processes. Before
proving the theorem, we establish two useful lemmas.
Consider k fixed distinct numbers u1 < u2 < · · ·< uk in the interval (0, 1) and let u0 = 0 and
uk + 1 = 1 be the extreme points. We will be working with the k + 1 bins induced by these points
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and with the order statistics from the uniform i.i.d. process U1, U2,… that belong to the different
bins. In particular, let

Cn = Cn(u1, u2,… uk) = (Cn,1,Cn,2,… ,Cn,k,Cn,k+1)′

= n ⋅ (Fn(u1),Fn(u2) − Fn(u1),… ,Fn(uk) − Fn(uk−1), 1 − Fn(uk))′

be the sequence of the vectors of counts of i.i.d. uniform observations U1, U2,… ,Un that belong
to the different bins, n = 1, 2,... . In order to keep the notation simple, we consider the dependence
of Cn on u1, u2,… ,uk to be understood. It is well known that the distribution of Cn is multinomial
with parameters n, u1, u2 − u1,… ,uk − uk − 1, 1 − uk; that is, the probability mass function of
the vector (Cn, 1, Cn, 2,… ,Cn, k)′, evaluated at the vector of non-negative integers (c1,… ,ck),
with

∑k
𝑗=1 c𝑗 ≤ n, is

n!
k+1∏
𝑗=1

(u𝑗 − u𝑗−1)c𝑗

c𝑗!
, (A.1)

where ck+1 = n −
∑k

𝑗=1 c𝑗 . ◼

Lemma 1. Let U1,… ,Un be a sequence of i.i.d. uniform random variables on [0, 1]. Let
Un, 1 ≤ · · ·≤ Un, n be their order statistics. The constants 0 = u0 < u1 < u2 < · · ·< uk < uk + 1 = 1
induce a partition of the interval (0, 1) into bins. The order statistics Un, 1,… ,Un, n may be
subdivided into groups that belong the different bins. The counts of the order statistics falling
into each of the bins can be summarized via the multinomial vector Cn. The vectors of order
statistics belonging to each bin are conditionally independent, given Cn. Each of these vectors
has a conditional distribution equal to the distribution of the order statistics of Cn, j i.i.d. uniform
observations on the interval (uj − 1, uj).

Proof of Lemma 1. The density of the order statistics Un, 1 ≤ · · ·≤ Un, n evaluated at
0 < x1 < · · ·< xn < 1 is n! (0 < x1 < x2 < · · ·< xn < 1). In order to write the joint density of the
order statistics and the vector Cn = (c1,… , ck, ck + 1)′, a compatibility factor

∏k
𝑗=1(xc1+···+c𝑗 <

u𝑗 < xc1+···+c𝑗+1
) must be included. The conditional density of Un, 1 ≤ Un, 2 ≤ · · ·≤ Un, n given

Cn = (c1,… ,ck, ck + 1)′ is

n!(0 < x1 < · · · < xn < 1)
∏k

𝑗=1(xc1+···+c𝑗 < u𝑗 < xc1+···+c𝑗+1
)

n!
∏k+1

𝑗=1 (u𝑗 − u𝑗−1)c𝑗∕c𝑗!

=
k+1∏
𝑗=1

c𝑗!
(u𝑗 − u𝑗−1)c𝑗

(u𝑗−1 < xc0+···+c𝑗−1+1 < · · · < xc0+···+c𝑗 < u𝑗),

where c0 = 0, which factors into the k + 1 marginal densities of the vectors of adjacent order
statistics belonging to the k + 1 bins. It should be apparent that their distributions are exactly as
described in the statement of the theorem.

The following lemma is a corollary of Lemma 1.
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Lemma 2. The conditional density of the two-dimensional vector (RU
n (u𝑗−1),RL

n(u𝑗))
′ given

Cn = (c1,… , ck, ck + 1)′, evaluated at (x, y), is

c𝑗(c𝑗 − 1)(y − x)c𝑗−2

(u𝑗 − u𝑗−1)c𝑗
(u𝑗 < x < y < u𝑗−1), (A.2)

provided cj > 1, for each j = 1,… ,k + 1.

Proof of Lemma 2. Given Cn, by the previous lemma RU
n (u𝑗−1) and RL

n(u𝑗) have the same
distribution as the minimum and the maximum, respectively, of cj uniform observations on the
interval (uj − 1, uj). It is easy to check that their density is given by the formula found in (A.2).

Proof of Theorem 1. Consider the moment generating function

𝜑YU
n (u1),…,YU

n (uk),−YL
n (u1),…,−YL

n (uk)
(v1,… , vk,w1,… ,wk)

of the vector (YU
n (u1),… ,YU

n (uk),−YL
n (u1),… ,−YL

n (uk))′ evaluated at (v1,… ,vk, w1,… ,wk)′.
We will examine its limiting form as n → ∞. For each n an explicit form can be found by

conditioning on Cn, viz.

𝜑YU
n (u1),…,YU

n (uk),−YL
n (u1),…,−YL

n (uk)
(v1,… , vk,w1,… ,wk)

= 𝔼

(
exp

[
k∑

𝑗=1

{
v𝑗Y

U
n

(
u𝑗

)
− w𝑗Y

L
n (u𝑗)

}])

= 𝔼

{
𝔼

(
exp

[
k∑

𝑗=1

{
v𝑗Y

U
n

(
u𝑗

)
− w𝑗Y

L
n (u𝑗)

}] | Cn

)}

= 𝔼

(
k+1∏
𝑗=1

𝔼
[
exp

{
v𝑗−1YU

n

(
u𝑗−1

)
− w𝑗Y

L
n (u𝑗)

} |Cn
])

,

where v0 = wk + 1 = 0 for the sake of obtaining a compact expression. To obtain the last line,
we used the conditional independence property that we derived in Lemma 1 and grouped the
random variables relative to the different bins.

Now we apply Lemma 2 to obtain an explicit form for the random variable
𝔼[exp{v𝑗−1YU

n (u𝑗−1) − w𝑗Y
L
n (u𝑗)}|Cn].

By the strong law of large numbers, for every 𝜀 there exist a set A𝜀 such that ℙ(A𝜀) = 1 and
for all 𝜔 ∈ A𝜀 there exist an N(𝜔, 𝜀) such that for all n > N(𝜔, 𝜀)

min
𝑗=1,…,k+1

Cn,𝑗

n
(𝜔) > u𝑗 − u𝑗−1 − 𝜀.

On any such set for all n > max
{

N (𝜔) , 1
u𝑗−u𝑗−1−𝜀

}
we have

min
𝑗=1,…,k+1

Cn,𝑗(𝜔) > 1.
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Without loss of generality, we can work on the set A𝜀 as long as only the asymptotic results are
of interest. Then, on this set A𝜀, for any n large enough we have

𝔼[exp{v𝑗−1YU
n (u𝑗−1) − w𝑗Y

L
n (u𝑗)}|Cn]

= ∫
u𝑗

u𝑗−1
∫

u𝑗

x
exp{v𝑗−1(n + 1)(x − u𝑗−1) − w𝑗(n + 1)(y − u𝑗)}

×
Cn,𝑗(Cn,𝑗 − 1)(y − x)Cn,𝑗−2

(u𝑗 − u𝑗−1)Cn,𝑗
dydx

= ∫
1

0 ∫
1−s

0
exp{v𝑗−1(n + 1)(u𝑗 − u𝑗−1)s + w𝑗(n + 1)(u𝑗 − u𝑗−1)t}

× Cn,𝑗(Cn,𝑗 − 1)(1 − s − t)Cn,𝑗−2dtds

= 1 + I𝑗1 + I𝑗2 + I𝑗3

after the exchange of variable s = (x − uj − 1)/(uj − uj − 1) and t = (uj − y)/(uj − uj − 1) and several
integrations by parts; here

I𝑗1 = v𝑗−1(n + 1)(u𝑗 − u𝑗−1) ∫
1

0
exp{v𝑗−1(n + 1)(u𝑗 − u𝑗−1)s}(1 − s)Cn,𝑗ds,

I𝑗2 = w𝑗(n + 1)(u𝑗 − u𝑗−1) ∫
1

0
exp{w𝑗(n + 1)(u𝑗 − u𝑗−1)t}(1 − t)Cn,𝑗dt,

I𝑗3 = v𝑗−1w𝑗(n + 1)2(u𝑗 − u𝑗−1)2

× ∫
1

0 ∫
1−t

0
exp{v𝑗−1(n + 1)(u𝑗 − u𝑗−1)s + w𝑗(n + 1)(u𝑗 − u𝑗−1)t}(1 − s − t)Cn,𝑗ds dt.

Now, by the law of large numbers we have Cn, j/(n + 1) → uj − uj − 1 almost surely (a.s.), as
n →∞, for each j = 1,… ,k + 1. Thus on the set A𝜀 introduced previously{(

1 − s
n + 1

)n+1
}Cn,𝑗∕(n+1)

≤ exp (−s)u𝑗−u𝑗−1−𝜀 . (A.3)

After employing the changes of variable s = z
n

and t = r
n
, we can apply the dominated convergence

theorem; it follows that, as n → ∞ and for |vj| < 1, j = 0, 1,… ,k + 1,

I𝑗1 = v𝑗−1(u𝑗 − u𝑗−1) ∫
n

0
exp{v𝑗−1(u𝑗 − u𝑗−1)z}

{(
1 − z

n + 1

)n+1
} Cn,𝑗

n+1
dz

→ v𝑗−1(u𝑗 − u𝑗−1) ∫
∞

0
exp{(v𝑗−1 − 1)(u𝑗 − u𝑗−1)z}dz

=
v𝑗−1

1 − v𝑗−1
a.s. ,

I𝑗2 →
w𝑗

1 − w𝑗

a.s. , and
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I𝑗3 = v𝑗−1w𝑗n
2(u𝑗 − u𝑗−1)2

× ∫
n

0 ∫
n(1−r)

0
exp{v𝑗−1(u𝑗 − u𝑗−1)z + w𝑗(u𝑗 − u𝑗−1)r}

{(
1 − z + r

n + 1

)n+1
}Cn,𝑗

n+1
dzdr

→
v𝑗−1

1 − v𝑗−1
×

w𝑗

1 − w𝑗

a.s.

After some additional algebra we also have the result that as n →∞

k+1∏
𝑗=1

(1 + I𝑗1 + I𝑗2 + I𝑗3) →
k+1∏
𝑗=1

1
1 − v𝑗−1

× 1
1 − w𝑗

=
k∏

𝑗=1

1
1 − v𝑗

× 1
1 − w𝑗

almost surely, since we set v0 = wk + 1 = 0. Moreover, since the formula found in (A.3) also
ensures uniform integrability, we also have

𝜑YU
n (u1),…,YU

n (uk),−YL
n (u1),…,−YL

n (uk)
(v1,… , vk,w1,… ,wk)

= 𝔼

{
k+1∏
𝑗=1

(
1 + I𝑗1 + I𝑗2 + I𝑗3

)}
→

k∏
𝑗=1

1
1 − v𝑗

× 1
1 − w𝑗

,

which concludes the proof of Theorem 1. ◼

We can recognize Theorem 4 to be a consequence of Theorem 3, by means of a suitable
application of the continuous mapping theorem. The detailed proof follows below.

Proof of Theorem 4. For every t, there are nFn(t) observations in our sample of size n which
are smaller than t, and the value of the last observation is exactly equal to

RL
n(t) = Un,n𝔽n(t) = ℚn(𝔽n(t)) .

By (A.3) we have In(t) =
n+1

2

∑nFn(t)
i=1 D2

n,i +
n+1

2
{t − RL

n(t)}
2 . Then

n + 1
2

nFn(t)∑
i=1

D2
n,i ≤ In(t) ≤ n + 1

2

(n+1)Fn(t)∑
i=1

D2
n,i .

Since ⌊(n + 1)Fn(t)⌋ = nFn(t) for all 0 ≤ t < Un, n and ⌊(n + 1)Fn(t)⌋ = nFn(t) + 1 for all

Un, n ≤ t ≤ 1, it follows that the difference between 2
√

n + 1 { In(t) − 𝔽n(t) } and En{𝔽n(t)} is

uniformly bounded by (n + 1)(maxiDn, i)/2. By Slud (1978) we have that maxiDn,i = O
(

log n
n

)
almost surely as n → ∞, and

2
√

n { IL
n (t) − 𝔽n(t) } = En+1{𝔽n(t)} + O

[{
(log n)2√

n

}]

with probability one. Accordingly, En{𝔽n(t)} and 2
√

n + 1 { In(t) − 𝔽n(t) } have the same limit
distribution. Now 𝔽n(⋅) converges to the identity function id(⋅) (which of course is deterministic)
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and En(⋅) converges weakly to V (⋅). As a result, the pair (En(⋅), 𝔽n(⋅)) converges weakly in
D2(0, 1) to (V (⋅), id(⋅)), and by the continuity of the composition map, applying the continuous
mapping theorem (Billingsley 1999, p. 151), we can conclude that

2
√

n + 1 { In(t) − 𝔽n(t) } ⇒ V(t), t ∈ [0, 1] .
◼

Proof of Theorem 4. We can derive the two-sided maximal probability distribution for V (t)
from that of the pinned Brownian motion. Clearly

ℙ( sup
0≤t≤1

|V(t) | < b) = 𝔼

{
ℙ

(
sup

0≤t≤1

||||||B (t) + t
W(1)√

5

|||||| < b

2
√

5

)|W(1)

}
.

Based on either Equation 4.12 in Beghin & Orsingher (1999) or Part II, Chapter 1, Equation
1.15.8(1) on p. 174 in Borodin & Salminen (2002), we know that

ℙ( sup
0≤t≤1

|B(t) + ty| < a) =
∞∑

h=−∞
(−1)he−2ha(ha−y) .

It follows that

ℙ( sup
0≤t≤1

|V(t)| < b) = 𝔼

[ ∞∑
h=−∞

(−1)he
−2h b

2
√

5

{
h b

2
√

5
−W(1)√

5

}]

=
∞∑

h=−∞
(−1)he−

h2b2

10 𝔼
{

e
hb
5 W(1)

}
=

∞∑
h=−∞

(−1)he−
4
50 h2b2

.

◼
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