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Abstract We discuss the Pistone-Sempi exponential manifold on the finite-
dimensional Gaussian space. We consider the role of the entropy, the continuity
of translations, Poincaré-type inequalities, the generalized differentiability of prob-
ability densities of the Gaussian space.
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1 Introduction

The Information Geometry (IG) set-up based on exponential Orlicz spaces [19], as
further developed in [6, 8, 15, 16, 18, 20], has reached a satisfying consistency,
but has a basic defect. In fact, it is unable to deal with the structure of the measure
space on which probability densities are defined. When the basic space is Rn one
would like to discuss for example transformation models as sub-manifold of the
exponential manifold, which is impossible without some theory about the effect of
transformation of the state space on the relevant Orlicz spaces. Another example of
interest are evolution equations for densities, such as the Fokker–Planck equation,
which are difficult to discuss in this set-up without considering Gaussian Orlicz-
Sobolev spaces. See an example of such type of applications in [3–5].

In [10] the idea of an exponentialmanifold in aGaussian space has been introduced
and the idea is applied to the study of the spatially homogeneousBoltzmann equation.
In the second part of that paper, it is suggested that the Gaussian space allows to
consider Orlicz-Sobolev spaces with Gaussian weight of [12, Ch. II] as a set-up for
exponential manifolds.
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120 G. Pistone

In Sect. 2 we discuss some properties of the Gauss-Orlicz spaces. Most results are
quite standard, but are developed in some detail because to the best of our knowledge
the case of interest is not treated in standard treatises.Notable examples andPoincaré-
type inequalities are considered in Sect. 3.

The properties of the exponential manifold in the Gaussian case that are related
with the smoothness of translation and the existence of mollifiers are presented in
Sect. 4. A short part of this section is based on the conference paper [17]. Gaussian
Orlicz-Sobolev space are presented in Sect. 5. Only basic notions on Sobolev’s spaces
are used here, mainly using the presentation by Haim Brezis [2, Ch.8–9].

Part of the results presented here were announced in an invited talk at the confer-
ence IGAIA IV Information Geometry and its Applications IV, June 12–17, 2016,
Liblice, Czech Republic.

2 Orlicz Spaces with Gaussian Weight

All along this paper, the sample space is the real Borel space (Rn,B) and M denotes
the standard n-dimensional Gaussian density (M because of J.C. Maxwell!),

M(x) = (2π)−n/2 exp
(

−1
2
|x |2

)
, x ∈ Rn .

2.1 Generalities

First, we review basic facts about Orlicz spaces. Our reference on Orlicz space is
J. Musielak monograph [12, Ch. II].

On the probability space (Rn,B,M), called here the Gaussian space, the couple
of Young functions (cosh−1) and its conjugate (cosh−1)∗ are associated with the
Orlicz space L(cosh−1) (M) and L(cosh−1)∗ (M), respectively.

The space L(cosh−1) (M) is called exponential space and is the vector space of all
functions such that

∫
(cosh−1)(α f (x))M(x) dx < ∞ for some α > 0. This is the

same as saying that the moment generating function t %→
∫
et f (x)M(x) dx is finite

on a open interval containing 0.
If x, y ≥ 0, we have (cosh−1)′(x) = sinh(x), (cosh−1)′∗(y) = sinh−1(y) =

log
(
y +

√
1+ y2

)
, (cosh−1)∗(y) =

∫ y
0 sinh−1(t) dt . The Fenchel-Young inequal-

ity is

xy ≤ (cosh−1)(x)+ (cosh−1)∗(y) =
∫ x

0
sinh(s) ds +

∫ y

0
sinh−1(t) dt
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Information Geometry of the Gaussian Space 121

and

(cosh−1)(x) = x sinh(x) − (cosh−1)∗(sinh(x)) ;
(cosh−1)∗(y) = y sinh−1(y) − (cosh−1)(sinh−1(y))

= y log
(
y + (1+ y2)1/2

)
− (1+ y2)−1/2 .

The conjugate Young function (cosh−1)∗ is associated with the mixture space
L(cosh−1)∗ (M). In this case, we have the inequality

(cosh−1)∗(ay) ≤ C(a)(cosh−1)∗(y), C(a) = max(|a| , a2) . (1)

In fact

(cosh−1)∗(ay) =
∫ ay

0

ay − t√
1+ t2

dt

= a2
∫ y

0

y − s√
1+ a2s2

ds = a
∫ y

0

y − s
√

1
a2 + s2

ds .

The inequality (1) follows easily by considering the two cases a > 1 and a < 1. As a
consequence, g ∈ L(cosh−1)∗ (M) if, and only if,

∫
(cosh−1)∗(g(y))M(y) dy < ∞.

In the theory of Orlicz spaces, the existence of a bound of the type (1) is called
∆2-property, and it is quite relevant. In our case, it implies that the mixture space
L(cosh−1)∗ (M) is the dual space of its conjugate, the exponential space L(cosh−1) (M).
Moreover, a separating sub-vector space e.g., C∞

0 (Rn) is norm-dense.
In the definition of the associated spaces, the couple (cosh−1) and (cosh−1)∗

is equivalent to the couple defined for x, y > 0 by Φ(x) = ex − 1 − x and Ψ (y) =
(1+ y) log (1+ y) − y. In fact, for t > 0 we have log (1+ t) ≤ log

(
y +

√
1+ t2

)

and
log

(
t +

√
1+ t2

)
≤ log

(
t +

√
1+ 2t + t2

)
= log (1+ 2t) ,

so that we derive by integration the inequality

Ψ (y) ≤ (cosh−1)∗(y) ≤ 1
2
Ψ (2y) .

In turn, conjugation gives

1
2
Φ(x) ≤ (cosh−1)(x) ≤ Φ(x) .

The exponential space L (cosh−1) (M) and the mixture space L(cosh−1)∗ (M) are
the spaces of real functions on Rn respectively defined using the conjugate Young
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122 G. Pistone

functions cosh−1 and (cosh−1)∗. The exponential space and the mixture space are
given norms by defining the closed unit balls of L(cosh−1) (M) and L(cosh−1)∗ (M),
respectively, by

{
f
∣∣∣∣

∫
(cosh−1)( f (x)) M(x) dx ≤ 1

}
,

{
g

∣∣∣∣

∫
(cosh−1)∗(g(x)) M(x) dx ≤ 1

}
.

Such a norm is called Luxemburg norm.
The Fenchel-Young inequality

xy ≤ (cosh−1)(x)+ (cosh−1)∗(y)

implies that ( f, g) %→ EM [ f g] is a separating duality, precisely

∣∣∣∣

∫
f (x)g(x)M(x) dx

∣∣∣∣ ≤ 2 ∥ f ∥L(cosh−1)(M) ∥g∥L(cosh−1)∗ (M) .

A random variable g has norm ∥g∥L(cosh−1)∗ (M) bounded by ρ if, and only if,
∥g/ρ∥L(cosh−1)∗ (M) ≤ 1, that is EM [(cosh−1)∗(g/ρ)] ≤ 1, which in turn implies
EM [(cosh−1)∗(αg)] = EM [(cosh−1)∗(αρ(g/ρ))] ≤ ρα for all α ≥ 0. This is not
true for the exponential space L(cosh−1) (M).

It is possible to define a dual norm, called Orlicz norm, on the exponential space,
as follows. We have ∥ f ∥(L(cosh−1)∗ (M))∗ ≤ 1 if, and only if

∣∣∫ f (x)g(x)M(x) dx
∣∣ ≤ 1

for all g such that
∫
(cosh−1)∗(g(x))M(x) dx ≤ 1. With this norm, we have

∣∣∣∣

∫
f (x)g(x)M(x) dx

∣∣∣∣ ≤ ∥ f ∥(L(cosh−1)∗ (M))∗ ∥g∥L(cosh−1)∗ (M) (2)

The Orlicz norm and the Luxemburg norm are equivalent, precisely,

∥ f ∥L(cosh−1)(M) ≤ ∥ f ∥L(cosh−1)∗ (M)∗ ≤ 2 ∥ f ∥L(cosh−1)(M) .

2.2 Entropy

The use of the exponential space is justified by the fact that for every 1-dimensional
exponential family I ∋ θ %→ p(θ) ∝ eθV , I neighborhood of 0, the sufficient statis-
tics V belongs to the exponential space. The statistical interest of the mixture space
resides in its relation with entropy.

If f is a positive density of the Gaussian space,
∫

f (x)M(x) dx = 1, we define
its entropy to be Ent ( f ) = −

∫
f (x) log f (x)M(x) dx . As x log x ≥ x − 1, the

integral is well defined. It holds
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−
∫

f (x) log+ f (x)M(x) dx ≤ Ent ( f ) ≤ e−1 −
∫

f (x) log+ f (x)M(x) dx ,

(3)
where log+ is the positive part of log.

Proposition 1 A positive density f of the Gaussian space has finite entropy if, and
only if, f belongs to the mixture space L (cosh−1)∗ (M).

Proof We use Eq. (3) in order to show the equivalence. For x ≥ 1 it holds

2x ≤ x +
√
1+ x2 ≤ (1+

√
2)x .

It follows

log 2+ log x ≤ log
(
x +

√
1+ x2

)
= sinh−1(x) ≤ log

(
1+

√
2
)
+ log x ,

and, taking the integral
∫ y
1 with y ≥ 1, we get

log 2(y − 1)+ y log y − y + 1

≤ (cosh−1)∗(y) − (cosh−1)∗(1)

≤ log
(
1+

√
2
)
(y − 1)+ y log y − y + 1 ,

then, substituting y > 1 with max(1, f (x)), f (x) > 0,

(log 2 − 1)( f (x) − 1)+ + f (x) log+ f (x)

≤ (cosh−1)∗(max(1, f (x))) − (cosh−1)∗(1)

≤ (log
(
1+

√
2
)

− 1)( f (x) − 1)+ + f (x) log+ f (x) .

By taking the Gaussian integral, we have

(log 2 − 1)
∫

( f (x) − 1)+M(x) dx +
∫

f (x) log+ f (x)M(x) dx

≤
∫

(cosh−1)∗(max(1, f (x)))M(x) dx − (cosh−1)∗(1)

≤ (log
(
1+

√
2
)

− 1)
∫

( f (x) − 1)+M(x) dx +
∫

f (x) log+ f (x)M(x) dx ,

which in turn implies the statement because f ∈ L1(M) and
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124 G. Pistone

∫
(cosh−1)∗( f (x))M(x) dx + (cosh−1)∗(1)

=
∫

(cosh−1)∗(max(1, f (x)))M(x) dx

+
∫

(cosh−1)∗(min(1, f (x)))M(x) dx .

!

Of course, this proof does not depend on the Gaussian assumption.

2.3 Orlicz and Lebesgue Spaces

We discuss now the relations between the exponential space, the mixture space, and
the Lebesgue spaces. This provides a first list of classes of functions that belong to
the exponential space or to the mixture space. The first item in the proposition holds
for a general base probability measure, while the other is proved in the Gaussian
case.

Proposition 2 Let 1 < a < ∞.

1.
L∞(M) ↪→ L(cosh−1) (M) ↪→ La(M) ↪→ L(cosh−1)∗ (M) ↪→ L1(M) .

2. If ΩR = {x ∈ Rn ||x | < R }, the restriction operator is defined and continuous
in the cases

L(cosh−1) (M) → La(ΩR), L(cosh−1)∗ (M) → L1(ΩR)

Proof 1. See [12, Ch. II].
2. For all integers n ≥ 1,

1 ≥
∫
(cosh−1)

(
f (x)

∥ f ∥L(cosh−1)(M)

)
M(x) dx

≥
∫

ΩR

1
(2n)!

(
f (x)

∥ f ∥L(cosh−1)(M)

)2n

M(x) dx

≥ (2π)−n/2e−R2/2

(2n)! ∥ f ∥L(cosh−1)(M)

∫

ΩR

( f (x))2n dx .

!
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3 Notable Bounds and Examples

There is a large body of literature about the analysis of the Gaussian space L2(M).
In order to motivate our own construction and to connect it up, in this section we
have collected some results about notable classes of functions that belongs to the
exponential space L(cosh−1) (M) or to the mixture space L(cosh−1)∗ (M). Some of the
examples will be used in the applications of Orlicz-Sobolev spaces in the Information
Geometry of the Gaussian space. Basic references on the analysis of the Gaussian
space are [11, V.1.5], [21, 4.2.1], and [13, Ch.1].

3.1 Polynomial Bounds

The exponential space L(cosh−1) (M) contains all functions f ∈ C2(Rn;R) whose
Hessian is uniformly dominated by a constant symmetric matrix. In such a case,
f (x) = f (0)+ ∇ f (0)x + 1

2 x
∗ Hess f (x̄)x , with x∗ Hess f (y)x ≤ λ |x |2, y ∈ Rn ,

and λ ≥ 0 being the largest non-negative eigen-value of the dominating matrix. Then
for all real α,

∫

Rn
eα f (x)M(x) dx <

1
(2π)n/2

∫

Rn
eα f (0)+∇ f (0)x+ 1

2 (αλ−1)|x |2 dx

and the RHS is finite for α < λ−1. In particular, L(cosh−1) (M) contains all polyno-
mials with degree up to 2.

An interesting simple application of the same argument is the following. Assume
p = ev is a positive density on the Gaussian space such that

eA1(x) ≤ ev(x) ≤ eA2(x), x ∈ Rn ,

for suitable second order polynomials A1, A2. Then v ∈ L(cosh−1) (M). Inequalities
of this type appear in the theory of parabolic equations e.g., see [21, Ch.4].

The mixture space L(cosh−1)∗ (M) contains all random variables f : Rd → R
which are bounded by a polynomial, in particular, all polynomials. In fact, all poly-
nomials belong to L2(M) ⊂ L(cosh−1)∗ (M).

3.2 Densities of Exponential Form

In this paper, we are specially interested in densities of the Gaussian space of the
form f = ev , that is

∫
ev(x)M(x) dx = 1. Let us now consider simple properties of

the mappings f %→ v = log f and v %→ f = ev .
We have seen in Proposition1 that f = ev ∈ L(cosh−1)∗ (M) if, and only if,
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−Ent (ev) =
∫

ev(x)v(x)M(x) dx < ∞ .

As limx→+∞
cosh(x)
xex = 0, we do not expect v ∈ L(cosh−1) (M) to imply f = ev ∈

L(cosh−1)∗ (M).
As (cosh−1)(α log y) = (yα + y−α)/2 − 1, α > 0, then v = log f ∈

L(cosh−1) (M) if, and only if, both f α and f −α both belong to L1(M) for some
α > 0. In the case ∥v∥L(cosh−1)(M) < 1, then we can take α > 1 and f ∈ Lα(M) ⊂
L(cosh−1)∗ (M). In conclusion, exp : v %→ ev maps the open unit ball of L(cosh−1) (M)
into ∪α>1Lα(M) ⊂ L(cosh−1)∗ (M).

This issue is discussed in the next Sect. 4.

3.3 Poincaré-Type Inequalities

Let us denote by Ck
b (Rn) the space of functions with derivatives up to order k, each

bounded by a constant. We write Ck
p(Rn) if all the derivative are bounded by a

polynomial. We discuss below inequalities related to the classical Gaussian Poincaré
inequality, which reads, in the 1-dimensional case,

∫ (
f (x) −

∫
f (y)M(y) dy

)2

M(x) dx ≤
∫ ∣∣ f ′(x)

∣∣2M(x) dx , (4)

for all f ∈ C1
p(Rn). We are going to use the same techniques used in the classical

proof of (4) e.g., see [13].
If X , Y are independent standard Gaussian variables, then

X ′ = e−t +
√
1 − e−2t Y, Y ′ =

√
1 − e−2t X − e−t Y

are independent standard Gaussian random variables for all t ≥ 0. Because of that,
it is useful to define Ornstein–Uhlenbeck semi-group by the Mehler formula

Pt f (x) =
∫

f (e−t x +
√
1 − e−2t y)M(y) dy , t ≥ 0, f ∈ Cp(Rn) . (5)

For any convex function Φ, Jensen’s inequality gives

∫
Φ(Pt f (x))M(x) dx

≤
∫ ∫

Φ( f (e−t x +
√
1 − e−2t y))M(y) dy M(x) dx

=
∫

Φ( f (x))M(x) dx .
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In particular, this shows that, for all t ≥ 0, f %→ Pt f is a contraction for the norm
of both the mixture space L(cosh−1)∗ (M) and the exponential space L(cosh−1) (M).

Moreover, if f ∈ C1
p(Rn), we have

f (x) −
∫

f (y)M(y) dy

= P0(x) − P∞ f (x)

= −
∫ ∞

0

d
dt

Pt f (x) dt

=
∫ ∞

0

∫
∇ f (e−t x +

√
1 − e−2t y) ·

(
e−t x − e−2t

√
1 − e−2t

y
)
M(y) dy dt (6)

≤
∫ ∞

0

e−t

√
1 − e−2t

dt ×
∫ ∣∣∣∇ f (e−t x +

√
1 − e−2t y)

∣∣∣
∣∣∣
√
1 − e−2t x − e−t y

∣∣∣M(y) dy . (7)

Note that ∫ ∞

0

e−t

√
1 − e−2t

dt =
∫ 1

0

ds√
1 − s2

= π

2
.

We use this remark and (7) to prove our first inequality.

Proposition 3 If f ∈ C1
p(Rn) and λ > 0 is such that

C
(
λ

π

2

) ∫
C(|y|)M(y) dy = 1 , C(a) = max(|a| , a2) , (8)

then
∫
(cosh−1)∗

(
λ

(
f (x) −

∫
f (y)M(y) dy

))
M(x) dx

≤
∫
(cosh−1)∗(|∇ f (x)|)M(x) dx ,

that is ∥∥∥∥ f −
∫

f (y)M(y) dy
∥∥∥∥
L(cosh−1)∗ (M)

≤ λ−1 ∥|∇ f |∥L(cosh−1)∗ (M) .

Proof Jensen’s inequality applied to Eq. (7) gives

(cosh−1)∗
(

λ

(
f (x) −

∫
f (y)M(y) dy

))
≤

∫ ∞

0

2
π

e−t
√
1 − e−2t

dt

×
∫

(cosh−1)∗
(
λ

π

2

∣∣∣∇ f (
√
1 − e−2t x + e−t y)

∣∣∣
∣∣∣
√
1 − e−2t x − e−t y

∣∣∣
)
M(y) dy (9)
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Nowweuseof thebound inEq. (1), namely (cosh−1)∗(ay) ≤ C(a)(cosh−1)∗(y)
if a > 0, where C(a) = max(|a| , a2), and further bound for a, k > 0

C(ka) = ka ∨ k2a2 ≤ kC(a) ∨ k2C(a) = C(k)C(a) ,

to get

(cosh−1)∗
(
λ

π

2

∣∣∣∇ f (e−t x +
√
1 − e−2t y)

∣∣∣
∣∣∣
√
1 − e−2t x − e−t y

∣∣∣
)

≤ C
(
λ

π

2

)
C
(∣∣∣
√
1 − e−2t x − e−t y

∣∣∣
)
(cosh−1)∗

(∣∣∣∇ f (e−t x +
√
1 − e−2t y)

∣∣∣
)
. (10)

Taking the expected value of both sides of the inequality resulting from (9) and
(10), we get

∫
(cosh−1)∗

(
λ

(
f (y) −

∫
f (x)M(x) dx

))
M(y) dy

≤ C
(
λ

π

2

) ∫
C(|y|)M(y) dy

∫
(cosh−1)∗(|∇ f (x)|)M(x) dx ,

We conclude by choosing a proper value of λ. !

The same argument does not work in the exponential space. We have assume the
boundedness of derivatives i.e., a Lipschitz assumption.

Proposition 4 If f ∈ C1
b(Rn) with sup {|∇ f (x)| |x ∈ Rn } = m then

∥∥∥∥ f −
∫

f (y)M(y) dy
∥∥∥∥
L(cosh−1)(M)

≤ π

2
√
2 log 2

m .

Proof Jensen’s inequality applied to Eq. (7) and the assumption give

(cosh−1)
(

λ

(
f (x) −

∫
f (y)M(y) dy

))

≤
∫

(cosh−1)
(
λ

π

2
mx

)
M(x) dx = exp

(
λ2

2
π2

4
m2

)
− 1 .

To conclude, choose λ such that the the RHS equals 1. !

Remark 1 Both Propositions3 and 4 are related with interesting results on the
Gaussian space other then bounds on norms. For example, if f is a density of the
Gaussian space, then the first one is a bound on the lack of uniformity f − 1, which,
in turn, is related with the entropy of f . As a further example, consider a case where∫

f (x)M(x) dx = 0 and ∥∇ f ∥∞ < ∞. In such a case, we have a bound on the
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Laplace transform of f , which in turn implies a bound on large deviations of the
random variable f .

To prepare the proof of an inequality for the exponential space, we start from
Eq. (6) and observe that for f ∈ C2

p(Rn) we can write

f (x) −
∫

f (y)M(y) dy

=
∫ ∞

0
e−t

(∫
∇ f (e−t x +

√
1 − e−2t y)M(y) dy

)
· x dt

−
∫ ∞

0
e−2t

∫
∇ · ∇ f (e−t x +

√
1 − e−2t y)M(y) dy dt ,

where integration by parts and (∂/∂yi )M(y) = −yi M(y) have been used to get the
last term.

If we write fi (z) = ∂
∂zi

and fii (z) = ∂2

∂z2i
f (z) then

∂

∂xi
Pt f (x) = e−t Pt fi (x)

and
∂2

∂x2i
Pt f (x) = e−2t Pt fii (x) ,

so that

f (x) −
∫

f (y)M(y) dy =
∫ ∞

0
(x · ∇Pt f (x) − ∇ · ∇Pt f (x)) dt .

If g ∈ C2
b (Rn) we have

∫
g(x)

(
f (x) −

∫
f (y)M(y) dy

)
M(x) dx

=
∫ ∞

0

(∫
g(x)x · ∇Pt f (x)M(x) dx −

∫
g(x)∇ · ∇Pt f (x)M(x) dx

)
dt

=
∫ ∞

0

(∫
g(x)x · ∇Pt f (x)M(x) dx +

∫
∇(g(x)M(x)) · ∇Pt f (x) dx

)
dt

=
∫ ∞

0

∫
∇g(x) · ∇Pt f (x)M(x) dx dt

=
∫ ∞

0
e−t

∫
∇g(x) · Pt∇ f (x)M(x) dx dt . (11)

Let |·|1 and |·|2 be two norms on Rn such that |x · y| ≤ |x |1 |y|2. Define the
covariance of f, g ∈ C2

p(Rn) to be
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CovM ( f, g)

=
∫ (

f (x) −
∫

f (y)M(y) dy
)
g(x)M(x) dx

=
∫ (

f (x) −
∫

f (y)M(y) dy
)(

g(x) −
∫

g(y)M(y) dy
)
M(x) dx .

Proposition 5 If f, g ∈ C2
p(Rn), then

|CovM ( f, g)| ≤
∣∣∥∇ f ∥L(cosh−1)∗ (M)

∣∣
1

∣∣∥∇g∥(L(cosh−1)∗ (M))∗
∣∣
2 .

Proof We use Eq. (11) and the inequality (2).

∣∣∣∣

∫
∇g(x) · Pt∇ f (x)M(x) dx

∣∣∣∣

≤
n∑

i=1

∣∣∣∣

∫
gi (x)Pt fi (x)M(x) dx

∣∣∣∣

≤
n∑

i=1

∥gi∥L(cosh−1)∗ (M)∗ ∥Pt fi∥L(cosh−1)∗ (M)

≤
n∑

i=1

∥gi∥L(cosh−1)∗ (M)∗ ∥ fi∥L(cosh−1)∗ (M)

≤
∣∣∥∇g∥L(cosh−1)∗ (M)∗

∣∣
1

∣∣∥∇ f ∥L(cosh−1)∗ (M)

∣∣
2 .

!

If gn is a sequence such that ∇gn → 0 in L(cosh−1) (M), then the inequality above
shows that gn −

∫
gn(x)M(x) dx → 0.

4 Exponential Manifold on the Gaussian Space

In this section we first review the basic features of our construction of IG as it was
discussed in the original paper [19]. Second, we see how the choice of the Gaussian
space adds new features, see [10, 16]. We normally use capital letters to denote
random variables and write EM [U ] =

∫
U (x)M(x) dx .

We define BM =
{
U ∈ L(cosh−1) (M) |EM [U ] = 0

}
. The positive densities of the

Gaussian spaceweconsider are all of the exponential form p = eU/ZM(U ),withU ∈
BM ⊂ L(cosh−1) (M) and normalization (moment functional, partition functional)
ZM(U ) = EM [U ] < ∞.

We can also write p = eU−KK (U ), where KM(U ) = log ZM(U ) is called cumulant
functional. Because of the assumption EM [U ] = 0, the chart mapping
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sM : p %→ log p − EM
[
log p

]
= U

is well defined.
Both the extended real functions ZM and KM are convex on BM . The common

proper domain of ZM and of KM contains the open unit ball of BM . In fact, if
EM [(cosh−1)(αU )] ≤ 1, α > 1, then, in particular, ZM(U ) ≤ 4.

We denote SM the interior of the proper domain of the cumulant functional. The
set SM is nonempty, convex, star-shaped, and solid i.e., the generated vector space
is BM itself.

We define themaximal exponentialmodel to be the set of densities on theGaussian
space E (M) =

{
eU−KM (U ) |U ∈ SM

}
.

We prove below that the mapping eM = s−1
M : SM → E (M) is smooth. The chart

mapping itself sM is not and induces on E (M) a topology that we do not discuss
here.

Proposition 6 The mapping eM : SM ∋ U %→ eU−KM (U ) is continuously differen-
tiable in L(cosh−1)∗ (M) with derivative dHeM(U ) = eM(U )(U − EeM (U )·M [H ]).

Proof We split the proof into numbered steps.

1. If U ∈ SM then αU ∈ SM for some α > 1. Moreover, (cosh−1)∗(y) ≤ C(α)
|y|α. Then

EM
[
(cosh−1)∗(eU )

]
≤ const EM

[
eαU ] < ∞ .

so that eU ∈ L(cosh−1)∗ (M). It follows that eM(U ) = eU−KM (U ) ∈ L(cosh−1)∗ (M).
2. Given U ∈ SM , as SM is open in the exponential space L(cosh−1) (M), there

exists a constant ρ > 0 such that ∥H∥L(cosh−1)(M) ≤ ρ implies U + H ∈ SM . In
particular,

U + ρ

∥U∥L(cosh−1)(M)

U = ∥U∥L(cosh−1)(M) + ρ

∥U∥L(cosh−1)(M)

U ∈ SM .

We have, from the Hölder’s inequality with conjugate exponents

2(∥U∥L(cosh−1)(M) + ρ)

2 ∥U∥L(cosh−1)(M) + ρ
,

2(∥U∥L(cosh−1)(M) + ρ)

ρ
,

that

EM

[

exp

(
2 ∥U∥L(cosh−1)(M) + ρ

2 ∥U∥L(cosh−1)(M)

(U + H)

)]

≤ EM

[

exp

( ∥U∥L(cosh−1)(M) + ρ

∥U∥L(cosh−1)(M)

)

U

] 2∥U∥
L(cosh−1)(M)

+ρ

2(∥U∥
L(cosh−1)(M)

+ρ)

×EM

[

exp

(
(2 ∥U∥L(cosh−1)(M) + ρ)(∥U∥L(cosh−1)(M) + ρ)

ρ ∥U∥L(cosh−1)(M)

H

)] ρ
2(∥U∥

L(cosh−1)(M)
+ρ)

.
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In the RHS, the first factor is finite because the random variable under exp belong
to SM , while the second factor is bounded by a fixed constant for all H such that

∥H∥L(cosh−1)(M) ≤ ρ ∥U∥L(cosh−1)(M)

(2 ∥U∥L(cosh−1)(M) + ρ)(∥U∥L(cosh−1)(M) + ρ)
.

This shows that eM is locally bounded in L(cosh−1) (M).
3. Let us now consider

∏m
i=1 HieU with ∥Hi∥L(cosh−1)(M) ≤ 1 for i = 1, . . . ,m and

U ∈ SM . Chose an α > 1 such that αU ∈ SM , and observe that, because of the
previous item applied to αU , the mappingU %→ EM

[
eαU

]
is uniformly bounded

in a neighborhood of U by a constant C(U ). As α > (α + 1)/2 > 1 and we
have the inequality (cosh−a)∗(y) ≤ C((1+α)/2)

(1+α)/2 |y|(1+α)/2. It follows, using the
(m + 1)-terms Fenchel-Young inequality for conjugate exponents 2α/(α + 1)
and 2mα/(α − 1) (m times), that

EM

[

(cosh−1)∗

(
m∏

i=1

HieU
)]

≤ C((1+ α)/2)
(1+ α)/2

EM

[
m∏

i=1

|H |(1+α)/2 e(1+α)U/2

]

≤ C((1+ α)/2)
(1+ α)/2

(

EM
[
eαU ]+

m∑

i=1

EM
[|Hi |mα(1+α)/(α−1)]

)

≤ C((1+ α)/2)
(1+ α)/2

(

C(U )+
m∑

i=1

∥H∥mα(1+α)/(α−1)
Lmα(1+α)/(α−1)(M)

)

,

which is bounded by a constant depending on U and α. We have proved
that the multi-linear mapping (H1, . . . , Hm) %→ ∏m

i=1 HieU is continuous from
(L(cosh−1) (M))m to L(cosh−1)∗ (M), uniformly in a neighborhood of U .

4. Let us consider now the differentiability ofU %→ eU . ForU + H ∈ SM , it holds

0 ≤ e(U + H) − eU − eU H =
∫ 1

0
(1 − s)eU+sH H 2 ds

=
∫ 1

0
(1 − s)e(1−s)U+s(U+H)H 2 ds

≤
∫ 1

0
(1 − s)2eU H 2 ds +

∫ 1

0
s(1 − s)eU+H H 2 ds

=
(
1
3
eU + 1

6
eU+H

)
H 2 .
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Because of the previous item, the RHS is bounded by a constant times
∥H∥2L(cosh−1)(M) for ∥H∥L(cosh−1)(M) small, which in turn implies the differentia-
bility. Note that the bound is uniform in a neighborhood of U .

5. It follows that ZM and KM are differentiable and also eM is differentiable with
locally uniformly continuous derivative.

!

We turn to discuss the approximation with smooth random variables. We recall
that (cosh−1)∗ satisfies the ∆2-bound

(cosh−1)∗(ay) ≤ max(|a| , a2)(cosh−1)∗(y)

hence, bounded convergence holds for the mixture space L(cosh−1)∗ (M). That, in
turn, implies separability. This is not true for the exponential space L(cosh−1) (M).
Consider for example f (x) = |x |2. This function belongs in L(cosh−1) (M), but, if
fR(x) = f (x)(|x | ≥ R), then

∫
(cosh−1)(ϵ−1 fR(x)) M(x)dx ≥ 1

2

∫

|x |>R
eϵ−1|x |2 M(x)dx = +∞, if ϵ ≤ 2 ,

hence there is no convergence to 0. However, the truncation of f (x) = |x | does
converge.

While the exponential space L(cosh−1) (M) is not separable nor reflexive, we
have the following weak property. Let C0 (Rn) and C∞

0 (Rn) respectively denote the
space of continuous real functions with compact support and the space of infinitely-
differentiable real functions on Rn with compact support. The following proposition
was stated in [17, Prop. 2].

Proposition 7 For each f ∈ L(cosh−1) (M) there exist a nonnegative function h ∈
L(cosh−1) (M) and a sequence gn ∈ C∞

0 (Rn) with |gn| ≤ h, n = 1, 2, . . . , such that
limn→∞ gn = f a.e. As a consequence, C∞

0 (Rn) is weakly dense in L(cosh−1) (M).

Proof Our proof uses a monotone class argument [7, Ch. II]. Let H be the set of all
random variables f ∈ L(cosh−1) (M) for which there exists a sequence gn ∈ C0 (Rn)
such that gn(x) → f (x) a.s. and |gn(x)| ≤ | f (x)|. Let us show that H is closed
for monotone point-wise limits of positive random variables. Assume fn ↑ f and
gn,k → fn a.s. with

∣∣gn,k
∣∣ ≤ fn ≤ f . Each sequence (gnk)k is convergent in L1(M)

then, for each n we can choose a gn in the sequence such that ∥ fn − gn∥L1(M) ≤ 2−n .
It follows that | fn − gn| → 0 a.s. and also f − gn = ( f − fn)+ ( fn − gn) → 0 a.s.
Now we can apply the monotone class argument to C0 (Rn) ⊂ H. The conclusion
follows from the uniform density of C∞

0 (Rn) in C0 (Rn). !

The point-wise bounded convergence of the previous proposition implies a result
of local approximation in variation of finite-dimensional exponential families.

Proposition 8 Given U1, . . . ,Um ∈ BM, consider the exponential family
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pθ = exp

⎛

⎝
m∑

j=1

θ jU j − ψ(θ)

⎞

⎠ , θ ∈ Θ .

There exists a sequence (Uk
1 , . . . ,U

k
m)k∈N in C∞

0 (Rn)m and an α > 0 such that the
sequence of exponential families

pkθ = exp

⎛

⎝
m∑

j=1

θ jUk
j − ψk(θ)

⎞

⎠

is convergent in variation to pθ for all θ such that
∑∣∣θ j

∣∣ < α.

Proof For each j = 1, . . . ,m there exists a point-wise converging sequence (Uk
j )k∈N

in C∞
0 (Rn) and a bound hi ∈ L(cosh−1) (M). define h = ∧ j=1,...,mh j . Let α > 0

be such that EM [(cosh−1)(αh)] ≤ 1, which in turn implies EM
[
eαh

]
≤ 4. Each∑

j θ jUk
J is bounded in absolute value by αh if

∑m
j=1

∣∣θ j
∣∣ < α.

As

ψ(θ) = KM

⎛

⎝
m∑

j=1

θ jU j

⎞

⎠ = logEM

[
e
∑m

j=1 θ jU j

]

and
ψk(θ) = logEM

[
e
∑m

j=1 θ jUk
j

]

dominated convergence implies ψk(θ) → ψ(θ) and hence pk(x; θ) → p(x; θ) for
all x if

∑m
j=1

∣∣θ j
∣∣ < α. Sheffé lemma concludes the proof. !

4.1 Maximal Exponential Manifold as an Affine Manifold

The maximal exponential model E (M) =
{
eU−KM (U ) |U ∈ BM

}
is an elemen-

tary manifold embedded into L(cosh−1)∗ (M) by the smooth mapping eM : SM →
L(cosh−1)∗ (M). There is actually an atlas of charts that makes it into an affine mani-
fold, see [16]. We discuss here some preliminary results about this important topic.

An elementary computation shows that

(cosh−1)2(u) = 1
2
(cosh−1)(2u) − 2(cosh−1)(u) ≤ 1

2
(cosh−1)(2u) (12)

and, iterating,

(cosh−1)2k(u) ≤ 1
2k

(cosh−1)(2ku) .

Proposition 9 If f, g ∈ E (M), then L(cosh−1) ( f · M) = L(cosh−1) (g · M).
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Proof Given any f ∈ E (M), with f = eU−KM (U ) and U ∈ SM , and any V ∈
L(cosh−1) (M), we have from Fenchel-Young inequality and Eq. (12) that

∫
(cosh−1)(αV (x)) f (x)M(x) dx

≤ 1
2k+1k

∫
(cosh−1)(2kαV (x))M(x) dx

+2k − 1
2k

ZM(U )
2k

2k−1

∫
exp

(
2k

2k − 1
U
)
M(x) dx .

If k is such that 2k
2k−1U ∈ SM , one sees that V ∈ L(cosh−1) ( f · M). We have proved

that L(cosh−1) (M) ⊂ L(cosh−1) ( f · M).
Conversely,

∫
(cosh−1)(αV (x))M(x) dx =

∫
(cosh−1)(αV (x)) f −1(x) f (x)M(x) dx

≤ 1
2k+1k

∫
(cosh−1)(2kαV (x)) f (x)M(x) dx

+2k − 1
2k

ZM(U )
1

2k−1

∫
exp

(
1

2k − 1
U
)
M(x) dx .

If 1
2k−1U ∈ SM , one sees that V ∈ L(cosh−1) ( f · M) implies V ∈ L(cosh−1) (M). !

The affine manifold is defined as follows. For each f ∈ E (M), we define the
Banach space

B f =
{
U ∈ L(cosh−1) ( f · M)

∣∣E f ·M [U ] = 0
}
=

{
U ∈ L(cosh−1) (M) |EM [U f ] = 0

}
,

and the chart

s f : E (M) ∋ g %→ log
g

f
− E f ·M

[
log

g

f

]
.

It is easy to verify the following statement, which defines the exponential affine
manifold. Specific properties related with the Gaussian space are discussed in the
next Sect. 4.2 and space derivatives in Sect. 5.

Proposition 10 The set of charts s f : E (M) → B f is an affine atlas of global charts
on E (M).

On each fiber SpE (M) = Bp of the statistical bundle the covariance (U, V ) %→
EM [UV ] = ⟨U, V ⟩p provides a natural metric. In that metric the natural gradient of
a smooth function F : E (M) → R is defined by

d
dt

F(p(t)) = ⟨grad F(p(t)), Dp(t)⟩p(t) ,
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where t %→ p(t) is a smooth curve inE (M) and Dp(t) = d
dt log p(t) is the expression

of the velocity.

4.2 Translations and Mollifiers

In this section, we start to discuss properties of the exponential affine manifold of
Proposition10 which depend on the choice of the Gaussian space as base probability
space.

Because of the lack of norm density of the space of infinitely differentiable func-
tions with compact support C∞

0 (Rn) in the exponential space L(cosh−1) (M), we
introduce the following classical the definition of Orlicz class.

Definition 1 We define the exponential class, C (cosh−1)
0 (M), to be the closure of

C0 (Rn) in the exponential space L(cosh−1) (M).

We recall below the characterization of the exponential class.

Proposition 11 Assume f ∈ L(cosh−1) (M) and write fR(x) = f (x)(|x | > R). The
following conditions are equivalent:

1. The real function ρ %→
∫
(cosh−1)(ρ f (x)) M(x)dx is finite for all ρ > 0.

2. f ∈ Ccosh−1(M).
3. limR→∞ ∥ fR∥L(cosh−1)(M) = 0.

Proof This is well known e.g., see [12, Ch. II]. A short proof is given in our note
[17, Prop. 3]. !

Here we study of the action of translation operator on the exponential space
L(cosh−1) (M) and on the exponential class C (cosh−1)

0 (M). We consider both trans-
lation by a vector, τh f (x) = f (x − h), h ∈ Rn , and translation by a probability
measure, of convolution, µ, τµ f (x) =

∫
f (x − y) µ(dy) = f ∗ µ(x). A small part

of this material was published in the conference paper [17, Prop. 4–5].

Proposition 12 (Translation by a vector)

1. For each h ∈ Rn, the translation mapping L (cosh−1) (M) ∋ f %→ τh f is linear
and bounded from L(cosh−1) (M) to itself. In particular,

∥τh f ∥L(cosh−1)(M) ≤ 2 ∥ f ∥L(cosh−1)(M) if |h| ≤
√
log 2 .

2. For all g ∈ L(cosh−1)∗ (M) we have

⟨τh f, g⟩M =
〈
f, τ ∗

h g
〉
M , τ ∗

h g(x) = e−h·x− 1
2 |h|2τ−hg(x) ,

and |h| ≤ √
log 2 implies

∥∥τ ∗
h g

∥∥
L(cosh−1)(M))∗ ≤ 2 ∥g∥L(cosh−1)(M))∗ . The translation

mapping h %→ τ ∗
h g is continuous in L(cosh−1)∗ (M).
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3. If f ∈ C (cosh−1)
0 (M) then τh f ∈ C (cosh−1)

0 (M), h ∈ Rn, and the mapping
Rn : h %→ τh f is continuous in L(cosh−1) (M).

Proof 1. Let us first prove that τh f ∈ L(cosh−1) (M). Assume ∥ f ∥L(cosh−1)(M) ≤ 1.
For each ρ > 0, writing Φ = cosh−1,

∫
Φ(ρτh f (x)) M(x)dx =

∫
Φ(ρ f (x − h)) M(x)dx

=
∫

Φ(ρ f (z)) M(z + h)dz = e− 1
2 |h|2

∫
e−z·hΦ(ρ f (z)) M(z)dz ,

hence, using Hölder inequality and the inequality in Eq. (12),

∫
Φ(ρτh f (x)) M(x)dx

≤ e− 1
2 |h|2

(∫
e−2z·h M(z)dz

) 1
2
(∫

Φ2(ρ f (z)) M(z)dz
) 1

2

≤ 1√
2
e

|h|2
2

(∫
Φ(2ρ f (z))M(z) dz

) 1
2

. (13)

Take ρ = 1/2, so that EM
[
Φ

(
τh

1
2 f (x)

)]
≤ 1√

2
e

|h|2
2 , which implies f ∈

L(cosh−1) (M). Moreover, ∥τh f ∥L(cosh−1)(M) ≤ 2 if 1√
2
e

|h|2
2 ≤ 1.

The semi-group property τh1+h2 f = τh1τh2 f implies the boundedness for all h.
2. The computation of τ ∗

h is

⟨τh f, g⟩M =
∫

f (x − h)g(x) M(x)dx

=
∫

f (x)g(x + h)M(x + h) dx

=
∫

f (x)e−h·x− 1
2 |h|2τ−hg(x) M(x)dx

=
〈
f, τ ∗

h g
〉
M .

Computing Orlicz norm of the mixture space, we find

∥∥τ ∗
h g

∥∥
(L(cosh−1)(M))∗ = sup

{〈
f, τ ∗

h g
〉
M

∣∣∥ f ∥L(cosh−1)(M) ≤ 1
}

= sup
{⟨τh f, g⟩M

∣∣∥ f ∥L(cosh−1)(M) ≤ 1
}
.

From the previous item we know that |h| ≤ √
log 2 implies

⟨τh f, g⟩M ≤ ∥τh f ∥L(cosh−1)(M) ∥g∥(L(cosh−1)(M))∗

≤ 2 ∥ f ∥L(cosh−1)(M) ∥g∥(L(cosh−1)(M))∗ ,
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hence
∥∥τ ∗

h g
∥∥
(L(cosh−1)(M))∗ ≤ 2 ∥g∥L(cosh−1)(M))∗ .

Consider first the continuity a 0. We have for |h| ≤ √
log 2 and any φ ∈ C∞

0 (Rn)
that

∥τhg − g∥(L(cosh−1)(M))∗

≤ ∥τh(g − φ)∥(L(cosh−1)(M))∗ + ∥τhφ − φ∥(L(cosh−1)(M))∗ + ∥φ − g∥(L(cosh−1)(M))∗

≤ 3 ∥g − φ∥(L(cosh−1)(M))∗ +
√
2 ∥τhφ − φ∥∞ .

The first term in the RHS is arbitrary small because of the density of C∞
0 (Rn) in

L(cosh−1)∗ (M), while the second term goes to zero as h → 0 for each φ.
The general case follows from the boundedness and the semi-group property.

3. If f ∈ C (cosh−1)
0 (M), then , by Proposition11, the RHS of Eq. (13) is finite for all

ρ, which in turn implies that τh f ∈ C (cosh−1)
0 (M) because of Proposition11(1).

Other values of h are obtained by the semi-group property.
The continuity follows from the approximation argument, as in the previous item.

!

We denote by P the convex set of probability measures on Rn and call weak con-
vergence the convergence of sequences in the duality with Cb(Rn). In the following
proposition we denote by Pe the set of probability measures µ such that h %→ e

1
2 |h|2

is integrable. For example, this is the case when µ is Gaussian with variance σ2 I ,
σ2 < 1, or when µ has a bounded support. Weak convergence in Pe means µn → µ
weakly and

∫
e

1
2 |h|2 µn(dh) →

∫
e

1
2 |h|2 µ(dh). Note that we study here convolutions

for the limited purpose of deriving the existence of smooth approximations obtained
by mollifiers, see [2, 108–109].

Proposition 13 (Translation by a probability) Let µ ∈ Pe.

1. The mapping f %→ τµ f is linear and bounded from L (cosh−1) (M) to itself. If,
moreover,

∫
e

1
2 |h2| µ(dh) ≤

√
2, then

∥∥τµ f
∥∥
L(cosh−1)(M)

≤ 2 ∥ f ∥L(cosh−1)(M).

2. If f ∈ C (cosh−1)
0 (M) then τµ f ∈ C (cosh−1)

0 (M). The mapping P : µ %→ τµ f is
continuous at δ0 from the weak convergence to the L(cosh−1) (M) norm.

Proof 1. Let us write Φ = cosh−1 and note the Jensen’s inequality

Φ
(
ρτµ f (x)

)
= Φ

(
ρ

∫
f (x − h) µ(dh)

)

≤
∫

Φ (ρ f (x − h)) µ(dh) =
∫

Φ (ρτh f (x)) µ(dh) .

By taking the Gaussian expectation of the previous inequality we have, as in the
previous item,
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EM
[
Φ

(
ρτµ f

)]
≤

∫ ∫
Φ (ρ f (x − h))M(x) dx µ(dh)

=
∫

e− 1
2 |h|2

∫
e−h·zΦ (ρ f (z))M(z) dz µ(dh)

≤ 1√
2

∫
e

1
2 |h|2 µ(dh) EM [Φ(2ρ f )] . (14)

If ∥ f ∥L(cosh−1)(M) ≤ 1 and ρ = 1/2, the RHS is bounded, hence τµ f ∈
L(cosh−1) (M). If, moreover,

∫
e

1
2 |h|2 ≤

√
2, then the RHS is bounded by 1, hence∥∥τµ f

∥∥
L(cosh−1)(M)

≤ 2.
2. We have found above that for each ρ > 0 it holds (14), where the right-end-side

if finite for all ρ under the current assumption. It follows from Proposition11 that
τh f ∈ C (cosh−1)

0 (M).
To prove the continuity at δ0, assume

∫
e

1
2 |h|2 µ(dh) ≤

√
2, which is always

feasible if µ → δ0 in Pe weakly. Given ϵ > 0, choose φ ∈ C∞
0 (Rn) so that

∥ f − φ∥L(cosh−1)(M) < ϵ. We have

∥∥τµ f − f
∥∥
L(cosh−1)(M)

≤
∥∥τµ( f − φ)

∥∥
L(cosh−1)(M)

+
∥∥τµφ − φ

∥∥
L(cosh−1)(M)

+ ∥φ − f ∥L(cosh−1)(M)

≤ 3ϵ + A−1
∥∥τµφ − φ

∥∥
∞ ,

where A = ∥1∥L(cosh−1)(M). As limµ→δ0

∥∥τµφ − φ
∥∥

∞ = 0, see e.g. [11, III-1.9],
the conclusion follows.

!

We use the previous propositions to show the existence of smooth approximations
through sequences of mollifiers. A bump function is a non-negative function ω in
C∞
0 (Rn) such that

∫
ω(x) dx = 1. It follows that

∫
λ−nω(λ−1x) dx = 1, λ > 0 and

the family of mollifiers ωλ(dx) = λ−nω(λ−1x)dx , λ > 0, converges weakly to the
Dirac mass at 0 as λ ↓ 0 in Pe. Without restriction of generality, we shall assume
that the support of ω is contained in [−1,+1]n .

For each f ∈ L(cosh−1) (M) we have

τωλ(x) = f ∗ ωλ(x) =
∫

f (x − y)λ−nω(λ−1y) dy =
∫

[−1,+1]n
f (x − λz)ω(z) dz .

For each Φ convex we have by Jensen’s inequality that

Φ ( f ∗ ωλ(x)) ≤ (Φ ◦ f ) ∗ ωλ(x)
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and also
∫

Φ ( f ∗ ωλ(x))M(x) dx ≤
∫ ∫

[−1,+1]n
Φ ◦ f (x − λz)ω(z) dzM(x) dx

=
∫

Φ ◦ f (y)
(∫

[−1,+1]n
exp

(
−λ ⟨z, y⟩ − λ2

2
|z|2

)
ω(z) dz

)
M(y) dy

≤
∫

Φ ◦ f (y)M(y) dy .

Proposition 14 (Mollifiers) Let be given a family of mollifiers ωλ, λ > 0. For each
f ∈ C (cosh−1)

0 (M) and for each λ > 0 the function

τωλ f (x) =
∫

f (x − y)λ−nω(λ−1y) dy = f ∗ ωλ(x)

belongs to C∞(Rn). Moreover,

lim
λ→0

∥ f ∗ ωλ − f ∥L(cosh−1)(M) = 0 .

Proof Any function in L(cosh−1) (M) belongs to L1
loc(Rn), hence

x %→
∫

f (x − y)ωλ(y)dy =
∫

f (z)ωλ(z − x)dz

belongs to C∞(Rn), see e.g. [2, Ch.4]. Note that
∫
e|h|

2/2ωλ(dh) < +∞ and then
apply Proposition13(2).

Remark 2 Properties of weighted Orlicz spaces with the ∆2-property can be some-
times deduced from the properties on the un-weighted spaces by suitable embeddings,
but this is not the case for the exponential space. Here are two examples.

1. Let 1 ≤ a < ∞. The mapping g %→ gM
1
a is an isometry of La(M) onto La(Rn).

As a consequence, for each f ∈ L1(Rn) and each g ∈ La(M) we have∥∥∥
[
f ∗ (gM

1
a )
]
M− 1

a

∥∥∥
La(M)

≤ ∥ f ∥L1(Rn) ∥g∥La(M).

2. The mapping
g %→ sign (g) (cosh−1)−1

∗ (M(cosh−1)∗(g))

is a surjection of L(cosh−1)∗ (Rn) onto L(cosh−1)∗ (M) with inverse

h %→ sign (h) (cosh−1)−1
∗ (M−1(cosh−1)∗( f )) .

It is surjective from unit vectors (for the Luxemburg norm) onto unit vectors.

We conclude this section by recalling the following tensor property of the expo-
nential space and of the mixture space, see [10].
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Proposition 15 Let us split the components Rnx %→ (x1, x2) ∈ Rn1 × Rn2 and
denote by M1, M2, respectively, the Maxwell densities on the factor spaces.

1. A function f belongs to L(cosh−1) (M) if and only if for one α > 0 the partial
integral x1 →

∫
(cosh−1)(α f (x1, x2))M(x2) dx2 is M1-integrable.

2. A function f belongs to L (cosh−1)∗ (M) if and only if the partial integral x1 →∫
(cosh−1)∗( f (x1, x2))M(x2) dx2 is M1-integrable.

4.3 Gaussian Statistical Bundle

It is an essential feature of the exponential affine manifold on E (M) discussed in
Sect. 4.1 that the exponential statistical bundle

SE (M) =
{
(p,U )

∣∣p ∈ E (M) ,U ∈ Bp
}
,

with Bp =
{
U ∈ L(cosh−1) (p · M)

∣∣Ep·M [U ] = 0
}
is an expression of the tangent

bundle in the atlas
{
sp |p ∈ E (M)

}
. This depends on the fact that all fibers Bp

are actually a closed subspace of the exponential space L(cosh−1) (M). This has
been proved in Proposition9. The equality of the spaces L(cosh−1) (p · M) and
L(cosh−1) (M) is equivalent to p ∈ E (M), see the set of equivalent conditions called
Portmanteau Theorem in [20].

We now investigate whether translation statistical models are sub-set of the max-
imal exponential model E (M) and whether they are sub-manifolds. Proper sub-
manifolds of the exponential affine manifold should have a tangent bundle that splits
the statistical bundle.

Let p ∈ E (M) and write f = p · M . Then f is a positive probability density of
the Lebesgue space and so are all its translations

τh f (x) = p(x − h)M(x − h) = eh·x−
1
2 |h|2τh p(x) · M(x) = τ ∗

−h p(x) · M(x) .

From Propositions6 and 12(2) we know that the translated densities τ ∗
−h p, are in

L(cosh−1)∗ (M) for all h ∈ Rn and the dependence on h is continuous.
Let us consider now the action of the translation on the values of the chart sM . If

sM(p) = U , that is p = eU−KM (U ) with U ∈ SM , then

τ ∗
−h p(x)

= eh·X− 1
2 |h|2eU (x−h)−KM (U ) = exp

(
h · X − 1

2
|h|2 + τhU − KM(U )

)

= exp
(
(h · X + τhU − EM [τhU ]) −

(
KM(U )+ 1

2
|h|2 − EM [τhU ]

))
.

Here τhU ∈ L(cosh−1) (M) because of Proposition12(1). If τ ∗
−h p ∈ E (M), then
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sM(τ ∗
−h p) = h · X + τhU − EM [τhU ] .

The expected value of the translated τhU is

EM [τhU ] =
∫

U (x − h)M(x) dx = e− 1
2 |h|2

∫
e−h·xU (x)M(x) dx .

We have found that the action of the translation on the affine coordinate U =
sM(p) of a density p ∈ E (M) is

U %→ h · X + τhU − e− 1
2 |h|2EM

[
e−h·XU

]
, (15)

and we want the resulting value belong to SM , i.e. we want to show that

EM
[
exp (γ (h · X + τhU − EM [τhU ]))

]

= eγEM [τhU ]EM
[
eγh·X ]EM

[
eγτhU

]

= e
γ2

2 |h|2+γEM [τhU ]EM
[
eγτhU

]
.

is finite for γ in a neighborhood of 0.
We have the following result.

Proposition 16 1. If p ∈ E (M), for all h ∈ Rn the translated density τ ∗
−h p is in

E (M).
2. If sM(p) ∈ C (cosh−1)

0 (M), then sM(τ ∗
−h p) ∈ C (cosh−1)

0 (M) ∩ SM for all h ∈ Rn

and dependence in h is continuous.

Proof 1. For each γ and conjugate exponents α,β, we have

EM
[
eγτhU

]
= e− 1

2 |h|2
∫

e−h·xeγU (x)M(x) dx

≤ e− 1
2 |h|2

(
1
α
e

α2
2 |h|2 + 1

β
EM

[
eβγU ]

)
.

AsU ∈ SM , thenEM
[
e±aU

]
< ∞ for some a > 1, and we can take β = √

a and
γ = ±√

a.
2. Under the assumed conditions on U the mapping h %→ τhU is continuous in

C (cosh−1)
0 (M) because of Proposition12(3). So is h %→ EM [τhU ]. As Xi ∈

C (cosh−1)
0 (M), i = 1, . . . , n, the same is true for h %→ h · X . In conclusion, the

translated U of (15) belongs to C (cosh−1)
0 (M).

!

The proposition above shows that the translation statistical model τ ∗
−h p, h ∈ Rm

is well defined as a subset of E (M). To check if it is a differentiable sub-manifold,
we want to compute the velocity of a curve t %→ τ ∗

h(t) p, that is

giovanni.pistone@carloalberto.org



Information Geometry of the Gaussian Space 143

d
dt

(
h(t) · X + τh(t)U − EM

[
τh(t)

]
U
)
.

That will require first of all the continuity in h, henceU ∈ C (cosh−1)
0 (M), and more-

over we want to compute ∂/∂hiU (x − h), that is the gradient of U . This task shall
be the object of the next section.

Cases other than translations are of interest. Here are two sufficient conditions for
a density to be in E (M).

Proposition 17 1. Assume p > 0 M-a.s., EM [p] = 1, and

EM
[
pn1/(n1−1)] ≤ 2n1/(n1−1), EM

[
p−1/(n2−1)] ≤ 2n2/(n2−1) (16)

for some natural n1, n2 > 2. Then p ∈ E (M), the exponential spaces are equal,
L(cosh−1) (M) = L(cosh−1) (p · M), and for all random variable U

∥U∥L(cosh−1)(p·M) ≤ 2n1 ∥U∥L(cosh−1)(M) , (17)

∥U∥L(cosh−1)(M) ≤ 2n2 ∥U∥L(cosh−1)(p·M) . (18)

2. Condition (16 ) holds for p = √
π/2 |Xi | and for p = X2

i , i = 1, . . . , n.
3. Let χ be a diffeomorphism of Rn and such that both the derivatives are uniformly

bounded in norm. Then the density of the image underχ of the standardGaussian
measure belongs to E (M).

Proof 1. The bound on the moments in Eq. (16) is equivalent to the inclusion
in E (M) because of the definition of SM , or see [20, Th.4.7(vi)]. Assume
∥U∥L(cosh−1)(M) ≤ 1, that is EM [(cosh−1)(U )] ≤ 1. From Hölder inequality and
the elementary inequality in Eq. (12), we have

E f ·M

[
(cosh−1)

(
U
2n1

)]
= EM

[
(cosh−1)

(
U
2n1

)
f
]

≤ EM

[
(cosh−1)

(
U
2n1

)n1]1/n1
EM

[
f n1/(n1−1)](n1−1)/n1 ≤ 1

2
· 2 = 1

For the other direction, assume ∥U∥L(cosh−1)( f ·M) ≤ 1, that is EM [Φ(U ) f ] ≤ 1,
so that

EM

[
(cosh−1)

(
U
2n2

)]
= EM

[
(cosh−1)

(
U
2n2

)
f 1/n2 f −1/n2

]

≤ EM

[
(cosh−1)

(
U
2n2

)n2

f
]1/n2

EM
[
f −1/(n2−1)](n2−1)/n2 ≤ 1

2
· 2 = 1 .

2. Simple computations of moments.
3. We consider first the case where χ(0) = 0, in which case we have the following

inequalities. If we define α−1 = sup
{∥dχ(x)∥2 |x ∈ Rn

}
, then α |χ(x)|2 ≤ |x |2
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for all x ∈ Rn and equivalently, α |x |2 ≤
∣∣χ−1(x)

∣∣2. In a similar way, if we

define β−1 = sup
{∥∥dχ−1(y)

∥∥2 |y ∈ Rn
}
, then β

∣∣χ−1(y)
∣∣2 ≤ |y|2 and β |x |2 ≤

|χ(x)|2.
The density of the image probability is M ◦ χ−1

∣∣det dχ−1
∣∣ and we want to show

that for some ϵ > 0 the following inequalities both hold,

EM

⎡

⎣
(
M ◦ χ−1

∣∣det dχ−1
∣∣

M

)1+ϵ
⎤

⎦ < ∞

and

EM◦χ−1|det dχ−1|

⎡

⎣
(

M

M ◦ χ−1
∣∣det dχ−1

∣∣

)1+ϵ
⎤

⎦ < ∞ .

The first condition is satisfied as

∫ ∣∣det dχ−1(x)
∣∣1+ϵ

(
M

(
χ−1(x)

)

M(x)

)1+ϵ

M(x) dx

=
∫ ∣∣det dχ−1(x)

∣∣1+ϵ
M

(
χ−1(x)

)1+ϵ
M(x)−ϵ dx

≤ (2π)−n/2β− (1+ϵ)n
2

∫
exp

(
−1
2

(
(1+ ϵ)

∣∣χ−1(x)
∣∣2 − ϵ |x |2

))
dx

= (2π)−n/2β− (1+ϵ)n
2

∫
exp

(

− |x |2
2

(

(1+ ϵ)

∣∣χ−1(x)
∣∣2

|x |2 − ϵ

))

dx

≤ (2π)−n/2β− (1+ϵ)n
2

∫
exp

(
− |x |2

2
((1+ ϵ)α − ϵ)

)
dx ,

where we have used the Hadamard’s determinant inequality

∣∣det dχ−1(x)
∣∣ ≤

∥∥dχ−1(x)
∥∥n ≤ β−n/2

and the lower bound α ≤ |χ−1(x)|2
|x |2 , x ∈ Rn

∗. If α ≥ 1 then (1+ ϵ)α − ϵ = α +
ϵ(α − 1) ≥ α > 0 for all ϵ. If α < 1, then (1+ ϵ)α − ϵ > 0 if ϵ < α/(1 − α)
e.g., ϵ = α/2(1 − α), which in turn gives (1+ ϵ)α − ϵ = α/2. In conclusion,
there exist an ϵ > 0 such that

∫ ∣∣det dχ−1(x)
∣∣1+ϵ

(
M

(
χ−1(x)

)

M(x)

)1+ϵ

M(x) dx

≤ (2π)−n/2
∣∣det dχ−1(x)

∣∣1+ϵ
∫

exp
(

−α |x |2
4

)
dx =

(α

2

)n/2
.
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For the second inequality,

∫ (
M(y)

M
(
χ−1(y)

) ∣∣det dχ−1(y)
∣∣

)1+ϵ

M
(
χ−1(y)

) ∣∣det dχ−1(y)
∣∣ dy

=
∫

M(y)1+ϵM
(
χ−1(y)

)−ϵ ∣∣det dχ−1(y)
∣∣−ϵ

dy

=
∫

M(χ(x))1+ϵM(x)−ϵ
∣∣det dχ−1(χ(x))

∣∣−ϵ |det dχ(x)| dx

=
∫

|det dχ(x)|1+ϵ M(χ(x))1+ϵM(x)−ϵ dx .

As the last term is equal to the expression in the previous case with χ−1 replaced
by χ, the same proof applies with the bounds α and β exchanged.

!

Remark 3 While the moment condition for proving p ∈ E (M) has been repeatedly
used, nonetheless the results above have some interest. The first one is an example
where an explicit bound for the different norms on the fibers of the statistical bundle is
derived. The second case is the starting point for the study of transformation models
where a group of transformation χθ is given.

5 Weighted Orlicz-Sobolev Model Space

We proceed in this section to the extension of our discussion of translation statistical
models to statistical models of the Gaussian space whose densities are differen-
tiable. We restrict to generalities and refer to previous work in [10] for examples
of applications, such as the discussion of Hyvärinen divergence. This is a special
type of divergence between densities that involves an L2-distance between gradients
of densities [9] which has multiple applications. In particular, it is related with the
improperly called Fisher information in [22, p. 49].

We are led to consider a case classical weighted Orlicz-Sobolev spaces which
is not treated in much detail in standard monographs such as [1]. The analysis of
the finite dimensional Gaussian space i.e. the space of square-integrable random
variables on (Rn,B(Rn),M) is a well developed subject. Some of the result below
could be read as special case of that theory. We refer to P. Malliavin’s textbook [11,
Ch. 5] and to D. Nualart’s monograph [14].

5.1 Orlicz-Sobolev Spaces with Gaussian Weight

The first definitions are taken from our [10].
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Definition 2 The exponential and the mixture Orlicz-Sobolev-Gauss (OSG) spaces
are, respectively,

W 1,(cosh−1) (M) =
{
f ∈ L(cosh−1) (M)

∣∣∂ j f ∈ L(cosh−1) (M)
}
, (19)

W 1,(cosh−1)∗ (M) =
{
f ∈ L(cosh−1)∗ (M)

∣∣∂ j f ∈ L(cosh−1)∗ (M)
}
, (20)

where ∂ j , j = 1, . . . , n, is the partial derivative in the sense of distributions.

Asφ ∈ C∞
0 (Rn) impliesφM ∈ C∞

0 (Rn), for each f ∈ W 1,(cosh−1)∗ (M)wehave,
in the sense of distributions, that

〈
∂ j f,φ

〉
M =

〈
∂ j f,φM

〉
= −

〈
f, ∂ j (φM)

〉
=

〈
f,M(X j − ∂ j )φ

〉
=

〈
f, δ jφ

〉
M ,

with δ jφ = (X j − ∂ j )φ. The Stein operator δi acts on C∞
0 (Rn).

The meaning of both operators ∂ j and δ j = (X j − ∂ j ) when acting on square-
integrable random variables of the Gaussian space is well known, but here we are
interested in the action on OSG-spaces. Let us denote by C∞

p (Rn) the space of
infinitely differentiable functions with polynomial growth. Polynomial
growth implies the existence of all M-moments of all derivatives, hence C∞

p (Rn) ⊂
W 1,(cosh−1)∗ (M). If f ∈ C∞

p (Rn), then the distributional derivative and the ordinary
derivative are equal and moreover δ j f ∈ C∞

p (Rn). For each φ ∈ C∞
0 (Rn) we have〈

φ, δ j f
〉
M =

〈
∂ jφ, f

〉
M .

The OSG spaces W 1
cosh−1(M) and W 1

(cosh−1)∗(M) are both Banach spaces, see
[12, Sec. 10]. In fact, both the product functions (u, x) %→ (cosh−1)(u)M(x) and
(u, x) %→ (cosh−1)∗(u)M(x) are φ-functions according the Musielak’s definition.
The norm on the OSG-spaces are the graph norms,

∥ f ∥W 1
(cosh−1)(M) = ∥ f ∥L(cosh−1)(M) +

n∑

j=1

∥∥∂ j f
∥∥
L(cosh−1)(M)

(21)

and

∥ f ∥W 1
(cosh−1)∗ (M) = ∥ f ∥L(cosh−1)(M) +

n∑

j=1

∥∥∂ j f
∥∥
L(cosh−1)(M)

. (22)

Because of Proposition9, see also [20, Th.4.7], for each p ∈ E (M), we have both
equalities and isomorphisms L(cosh−1) (p · M) = L(cosh−1) (M) and L(cosh−1)∗(p ·
M) = L(cosh−1)∗ (M). It follows

W 1,(cosh−1) (M) = W 1,(cosh−1) (p · M)

=
{
f ∈ L(cosh−1) (p · M)

∣∣∂ j f ∈ L(cosh−1) (p · M)
}
, (23)

W 1,(cosh−1)∗ (M) = W 1,(cosh−1)∗ (p · M)

=
{
f ∈ L(cosh−1)∗ (p · M)

∣∣∂ j f ∈ L(cosh−1)∗ (p)
}
, (24)
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and equivalent graph norms for any density p ∈ E (M). The OSG spaces are compat-
ible with the structure of the maximal exponential family E (M). In particular, as all
Gaussian densities of a given dimension belong into the same exponential manifold,
one could have defined the OSG spaces with respect to any of such densities.

We review some relations between OSG-spaces and ordinary Sobolev spaces. For
all R > 0

(2π)−
n
2 ≥ M(x) ≥ M(x)(|x | < R) ≥ (2π)−

n
2 e− R2

2 (|x | < R), x ∈ Rn.

Proposition 18 Let R > 0 and let ΩR denote the open sphere of radius R.

1. We have the continuous mappings

W 1,(cosh−1) (Rn) ⊂ W 1,(cosh−1) (M) → W 1,p(ΩR), p ≥ 1.

2. We have the continuous mappings

W 1,p(Rn) ⊂ W 1,(cosh−1)∗
(
Rn) ⊂ W 1,(cosh−1)∗ (M) → W 1,1(ΩR), p > 1.

3. Each u ∈ W 1,(cosh−1) (M) is a.s. Hölder of all orders on each Ω R and hence a.s.
continuous. The restriction W 1,(cosh−1) (M) → C(Ω R) is compact.

Proof 1. From the inequality on M and from (cosh−1)(y) ≥ y2n/(2n)!.
2. From the inequality on M and from y2/2 ≥ (cosh−1)∗(y) and cosh(1) − 1+

(cosh−1)∗(y) ≥ |y|.
3. It is the Sobolev’s embedding theorem [2, Ch.9].

Let us consider now the extension of the ∂ j operator to the OSG-spaces and its
relation with the translation operator.

The operator given by the ordinary partial derivative ∂ j : C∞
p (Rn) → C∞

p (Rn) ⊂
L(cosh−1)∗ (M) is closable. In fact, if both fn → 0 and ∂ j fn → η in L(cosh−1)∗ (M),
then for all φ ∈ C∞

0 (Rn),

⟨φ, η⟩M = lim
n→∞

〈
φ, ∂ j fn

〉
M = lim

n→∞
⟨δφ, fn⟩M = 0 ,

hence η = 0. The same argument shows that ∂ j : C∞
0 (Rn) → C∞

0 (Rn) ⊂
L(cosh−1) (M) is closable.

For f ∈ L(cosh−1) (M) we define τh f (x) = f (x − h) and it holds τh f ∈
L(cosh−1) (M) because of Proposition12(l). For each given f ∈ W 1,(cosh−1) (M) we
denote by ∂ j f ∈ W 1,(cosh−1) (M), j = 1, . . . , n its distributional partial derivatives
and write ∇ f = (∂ j f : j = 1, . . . , n).

giovanni.pistone@carloalberto.org



148 G. Pistone

Proposition 19 (Continuity and directional derivative)

1. For each f ∈ W 1,(cosh−1) (M), each unit vector h ∈ Sn, and all t ∈ R, it holds

f (x + th) − f (x) = t
∫ 1

0

n∑

j=1

∂ j f (x + sth)h j ds .

Moreover, |t | ≤
√
2 implies

∥ f (x + th) − f (x)∥L(cosh−1)(M) ≤ 2t ∥∇ f ∥L(cosh−1)(M) ,

especially, limt→0 ∥ f (x + th) − f (x)∥L(cosh−1)(M) = 0 uniformly in h.
2. For each f ∈ W 1,(cosh−1) (M) the mapping h %→ τh f is differentiable from Rn

to L∞−0(M) with gradient ∇ f at h = 0.
3. For each f ∈ W 1,(cosh−1) (M) and each g ∈ L(cosh−1)∗ (M), the mapping h %→

⟨τh f, g⟩M is differentiable. Conversely, if f ∈ L(cosh−1) (M) and h %→ τh f is
weakly differentiable, then f ∈ W 1,(cosh−1) (M)

4. If ∂ j f ∈ C (cosh−1)
0 (M), j = 1, . . . , n, then strong differentiability in

L(cosh−1) (M) holds.

Proof 1. Recall that for each g ∈ C∞
0 (Rn) we have

〈
∂ j f, g

〉
M = −

〈
f, ∂ j (gM)

〉
=

〈
f, δ jg

〉
M , δ jg = X jg − ∂ jg ∈ C∞

0

(
Rn) .

We show the equality τ−th f − f = t
∫ 1
0 τ−sth(∇ f ) · h ds in the scalar product

with a generic g ∈ C∞
0 (Rn):

⟨τ−th f − f, g⟩M =
∫

f (x + th)g(x)M(x) dx −
∫

f (x)g(x)M(x) dx

=
∫

f (x)g(x − th)M(x − th) dx −
∫

f (x)g(x)M(x) dx

=
∫

f (x) (g(x − th)M(x − th) − g(x)M(x)) dx

= −t
∫

f (x)
∫ 1

0

n∑

j=1

∂ j (gM)(x − sth)h j ds dx

= −t
∫ 1

0

∫
f (x)

n∑

j=1

∂ j (gM)(x − sth)h j dx ds

= t
∫ 1

0

∫ n∑

j=1

∂ j f (x)h j g(x − sth)M(x − sth) dx ds

= t
∫ 1

0

∫ n∑

j=1

∂ j f (x + sth)h j g(x)M(x) dx ds
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=
〈
t
∫ 1

0
τ−sth(∇ f ) · h ds, g

〉

M
.

If |t | ≤ √
log 2 then the translation sth is small, |sth| ≤ √

log 2 so that, according
to Proposition12(1), we have∥τ−sth(∇ f · h)∥L(cosh−1)(M) ≤ 2 ∥∇ f · h∥L(cosh−1)(M)

and the thesis follows.
2. We want to show that the following limit holds in all Lα(M)-norms, α > 1:

lim
t→0

τ−th f − f
t

=
n∑

j=1

h j∂ j f .

Because of the identity in the previous Item, we need to show the limit

lim
t→0

∫ ∣∣∣∣

∫ 1

0
(τ−sth(∇ f (x) · h) − ∇ f (x) · h) ds

∣∣∣∣
α

M(x)dx = 0 .

The Jensen’s inequality gives

∫ ∣∣∣∣

∫ 1

0
(τ−sth(∇ f (x) · h) − ∇ f (x) · h) ds

∣∣∣∣
α

M(x)dx

≤
∫ 1

0

∫
|τ−sth(∇ f (x) · h) − ∇ f (x) · h)|α M(x)dx ds

and the result follows because translations are bounded and the continuous in
Lα(M).

3. We have
〈∫ 1

0
(τ(−sth) f − f ) ds, g

〉

M
=

∫ 1

0

〈
τ(−sth) f − f, g

〉
M ds

=
∫ 1

0

〈
f, τ ∗

(−sth)g − g
〉
M

ds .

Conclusion follows because y %→ τ ∗
y g is bounded continuous.

Assume now f ∈ L(cosh−1) (M) and h %→ τh f is weakly differentiable. Then
there exists f1, . . . , fn ∈ L(cosh−1) (M) such that for each φ ∈ C∞

0 (Rn)

〈
f j ,φM

〉
=

〈
f j ,φ

〉
M = d

dt

〈
τ−te j f,φ

〉
M = d

dt

〈
τ−te j f,φM

〉

= d
dt

〈
f, τte j (φM)

〉
= −

〈
f, ∂ j (φM

〉
.

Thedistributional derivative holds becauseφM is the generic element ofC∞
0 (Rn).

4. For each ρ > 0 Jensen’s inequality implies
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∥∥∥∥

∫ 1

0
(τ−sth(∇ f · h) − ∇ f · h) ds M(x)dx

∥∥∥∥
L(cosh−1)(M)

≤
∫ 1

0
∥(τ−sth(∇ f · h) − ∇ f · h) M(x)dx∥L(cosh−1)(M) ds.

As in Proposition12(1) we choose |t | ≤ √
log 2 to get

∣∣ste j
∣∣ ≤ √

log 2, 0 ≤ s ≤
1, so that ∥τ−sth∇ f · h∥L(cosh−1)(M) ≤ 2 ∥∇ f · h∥L(cosh−1)(M), hence the integrand
is bounded by ∥∇ f · h∥L(cosh−1)(M). The convergence for each s follows from the
continuity of the translation on C (cosh−1)

0 (M).

Notice that in Item 2. of the proposition we could have derived a stronger differ-
entiability if the mapping h %→ τh∇ f were continuous in L(cosh−1) (M). That, and
other similar observations, lead to the following definition.

Definition 3 The Orlicz-Sobolev-Gauss exponential class is

C1,(cosh−1)
0 (M) =

{
f ∈ W 1,(cosh−1) (M)

∣∣∣ f, ∂ j f ∈ C (cosh−1)
0 (M) , j = 1, . . . , n

}

The following density results will be used frequently in approximation arguments.
We denote by (ωn)n∈N a sequence of mollifiers.

Proposition 20 (Calculus in C1,(cosh−1)
0 (M))

1. For each f ∈ C1,(cosh−1)
0 (M) the sequence f ∗ ωn, n ∈ N, belongs to C∞(Rn) ∩

W 1,(cosh−1) (M). Precisely, for each n and j = 1, . . . , n, we have the equal-
ity ∂ j ( f ∗ ωn) = (∂ j f ) ∗ ωn; the sequences f ∗ ωn, respectively ∂ j f ∗ ωn, j =
1, . . . , n, converge to f , respectively∂ j f , j = 1, . . . , n, strongly in L (cosh−1) (M).

2. Same statement is true if f ∈ W 1,(cosh−1)∗ (M).
3. Let be given f ∈ C1,(cosh−1)

0 (M) and g ∈ W 1,(cosh−1)∗ (M). Then f g ∈ W 1,1(M)

and ∂ j ( f g) = ∂ j f g + f ∂ jg.
4. Let be given F ∈ C1(R) with

∥∥F ′∥∥
∞ < ∞. For each U ∈ C1,(cosh−1)

0 (M), we

have F ◦U, F ′ ◦U∂ jU ∈ C (cosh−1)
0 (M) and ∂ j F ◦U = F ′ ◦U∂ jU , in partic-

ular F(U ) ∈ C1,(cosh−1)
0 (M).

Proof 1. We need only to note that the equality ∂ j ( f ∗ ωn) = (∂ j f ) ∗ ωn is true
for f ∈ W 1,(cosh−1) (M). Indeed, the sequence f ∗ ωn belongs to C∞(Rn) ∩
L(cosh−1) (M) and converges to f in L(cosh−1) (M)-norm according fromProposi-
tion14. The sequence∂ j f ∗ ωn = (∂ j f ) ∗ ωn converges to∂ j f in L(cosh−1) (M)-
norm because of the same theorem.

2. Same proof.
3. Note that f g, ∂ j f g + f ∂ jg ∈ L1(M). The following convergence in L1(M)

holds

∂ j f g + f ∂ jg = lim
n→∞ ∂ j f ∗ ωng ∗ ωn + f ∗ ωn∂ jg ∗ ωn = lim

n→∞ ∂ j f ∗ ωng ∗ ωn ,
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so that for all φ ∈ C∞
0 (Rn)

〈
∂ j f g + f ∂ jg,φ

〉
= lim

n→∞

〈
∂ j f ∗ ωng ∗ ωn,φ

〉

= lim
n→∞

−
〈
f ∗ ωng ∗ ωn, ∂ jφ

〉
= −

〈
f g, ∂ jφ

〉
.

It follows that the distributional partial derivative of the product is ∂ j f g =
∂ j f g + f ∂ jg, in particular belongs to L1(M), hence f g ∈ W 1,1(M).

4. From the assumption on F we have |F(U )| ≤ |F(0)| +
∥∥F ′∥∥

∞ |U |. It follows
F ◦U ∈ L(cosh−1) (M) because

∫
(cosh−1) (ρF(U (x))) M(x)dx

≤ 1
2
(cosh−1)(2ρF(0))+ 1

2

∫
(cosh−1)

(
2ρ

∥∥F ′∥∥
∞ U (x))

)
M(x)dx ,

and ρ ∥F(U )∥L(cosh−1)(M) ≤ 1 if both

(cosh−1)(2ρF(0)) ≤ 1, 2ρ
∥∥F ′∥∥

∞ ∥U∥L(cosh−1)(M) ≤ 1 .

In the same way we show that F ′ ◦U∂ jU ∈ L(cosh−1) (M). Indeed,

∫
(cosh−1)

(
ρF ′(U (x))∂ jU (x)

)
M(x)dx

≤
∫
(cosh−1)

(
ρ
∥∥F ′∥∥

∞ ∂ jU (x)
)
M(x)dx ,

so that ρ
∥∥F ′ ◦U∂ jU

∥∥
L(cosh−1)(M)

≤ 1 if ρ
∥∥F ′∥∥

∞
∥∥∂ jU (x)

∥∥
L(cosh−1)(M)

= 1.
Because of the Item (1) the sequence U ∗ ωn belongs to C∞ and converges
strongly in L(cosh−1) (M) to U , so that from

∥F ◦ (U ∗ ωn) − F ◦U∥L(cosh−1)(M) ≤
∥∥F ′∥∥

∞ ∥U ∗ ωn −U∥L(cosh−1)(M)

we see that F ◦ (U ∗ ωn) → F ◦U in L(cosh−1) (M). In the same way,

∥∥F ′ ◦ (U ∗ ωn)∂ j (U ∗ ωn) − F ′ ◦U∂ jU
∥∥
L(cosh−1)(M)

≤
∥∥F ′ ◦ (U ∗ ωn)(∂ j (U ∗ ωn) − ∂ jU )

∥∥
L(cosh−1)(M)

+
∥∥(F ′ ◦ (U ◦ ωn) − F ′ ◦U )∂ jU

∥∥
L(cosh−1)(M)

≤
∥∥F ′∥∥

∞
∥∥∂ j (U ∗ ωn) − ∂ jU

∥∥
L(cosh−1)(M)

+
∥∥(F ′ ◦ (U ◦ ωn) − F ′ ◦U )∂ jU

∥∥
L(cosh−1)(M)

.
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The first term goes clearly to 0, while the second term requires consideration.
Note the bound

∣∣(F ′ ◦ (U ◦ ωn) − F ′ ◦U )∂ jU
∣∣ ≤ 2

∥∥F ′∥∥
∞
∣∣∂ jU

∣∣ ,

so that the sequence (F ′ ◦ (U ◦ ωn) − F ′ ◦U )∂ jU goes to zero in probability and
is bounded by a function in C (cosh−1)

0 (M). This in turn implies the convergence
in L(cosh−1) (M).
Finally we check that the distributional derivative of F ◦U is F ′ ◦U∂ jU : for
each φ ∈ C∞

0 (Rn)

〈
∂ j F ◦U,φM

〉
= −

〈
F ◦U, ∂ j (φM)

〉

= −
〈
F ◦U, δ jφ

〉
M

= lim
n→∞

〈
F ◦ (U ∗ ωn), δ jφ

〉
M

= lim
n→∞

〈
∂ j F ◦ (U ∗ ωn),φ

〉
M

= lim
n→∞

〈
F ′ ◦ (U ∗ ωn)∂ j (U ∗ ωn),φ

〉
M

=
〈
F ′ ◦U∂ jU,φ

〉
M

=
〈
F ′ ◦U∂ jU,φM

〉
.

We conclude our presentation by re-stating a technical result from [10, Prop. 15],
where the assumptions where not sufficient for the stated result.

Proposition 21 1. If U ∈ SM and f1, . . . , fm ∈ L(cosh−1) (M), then f1 · · ·
fmeM−KM (M) ∈ Lγ(M) for some γ > 1, hence it is in L (cosh−1)∗ (M).

2. If U ∈ SM ∩ C1,(cosh−1)
0 (M) and f ∈ C1,(cosh−1)

0 (M), then

f eu−KM (u) ∈ W 1,(cosh−1)∗ (M) ∩ C(Rn) ,

and its distributional partial derivatives are (∂ j f + f ∂ j u)eu−KM (u)

Proof 1. FromWe know that eU−KM (U ) · M ∈ E (M) and eU−KM (U ) ∈ L1+ε(M) for
some ε > 0. From that, let us prove that f1 · · · fmeU−KM (U ) ∈ Lγ(M) for some
γ > 1. According to classical (m+1)-term Fenchel-Young inequality,

| f1(x) · · · fn(x)| eU (x)−KM (U )

≤
m∑

i=1

1
αi

| fi (x)|αi + 1
β

∣∣eU (x)−KM (U )
∣∣β

,α1, . . . ,αm,β > 1,
m∑

i=1

1
αi

+ 1
β

= 1, x ∈ Rn.

Since (cosh−1)∗ is convex, we have
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EM
[
(cosh−1)∗(| f1 · · · fm | eU−KM (U ))

]

≤
m∑

i=1

1
αi

EM
[
(cosh−1)∗(| fi |αi )

]
+ 1

β
EM

[
(cosh−1)∗

(
eβ(U−KM (U ))

)]
.

Since f1, . . . , fm ∈ L(cosh−1) (M) ⊂ ∩α>1Lα(M), one has | fi |αi ∈
L(cosh−1)∗ (M), for i = 1, . . . ,m and allαi > 1, henceEM

[
(cosh−1)∗(| fi |αi )

]
<

∞ for i = 1, . . . ,m and all αi > 1. By choosing 1 < β < 1+ ε one has
eβ(U (x)−KM (U )) ∈ Lγ(M) ⊂ L(cosh−1)∗ (M), γ = 1+ε

β , so that EM [(cosh−1)∗](
eβ(U−KM (U ))

)
< ∞. This proves that (cosh−1)∗( f1 · · · fmeU−KM (U )) ∈ L1(M),

which implies f1 · · · fmeU (x)−KM (U ) ∈ L(cosh−1)∗ (M).
2. From the previous item we know f eU−KM (U ) ∈ L(cosh−1)∗ (M). For each j =

1, . . . , n from Proposition20(3) we have the distributional derivative ∂ j ( f eU ) =
∂ f eU + f ∂ jeU−KM (U ) we we need to show a composite function derivation,
namely ∂ jeU−KM (U ) = ∂ j ueU−KM (U ). Let χ ∈ C∞

0 (n) be a cut-off equal to 1 on
the ball of radius 1, zero outside the ball of radius 2, derivative bounded by 2,
and for n ∈ N consider the function x %→ Fn(x) = χ(x/n)ex which is C∞(Rn)

and whose derivative is bounded:

F ′
n(x) =

(
1
n
χ′(x/n)+ χ(x/n)

)
ex ≤

(
2
n
+ 1

)
e2n .

As Proposition20(4) applies, we have ∂ j Fn(U ) = F ′
n(U )∂ jU ∈ C (cosh−1)

0 (M).
Finally, for each φ ∈ C∞

0 (Rn),

〈
∂ jeU ,φ

〉
= −

〈
eU , ∂ jφ

〉

= − lim
n→∞

〈
Fn(U ), ∂ jφ

〉

= lim
n→∞

⟨∂Fn(U ),φ⟩

= lim
n→∞

〈
(
1
n
χ′(U/n)+ χ(U/n))∂ jUeU ,φ

〉

=
〈
∂ jUeU ,φ

〉
.

Remark 4 As a particular case of the above proposition, we see that U ∈ SM ∩
C1,(cosh−1)
0 (M) implies

eU−KM (U ) ∈ W 1,(cosh−1)∗ (M) with ∇eU−KM (U ) = ∇u eU−KM (U ) .
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6 Conclusions

In this paper we have given a self-contained expositions of the Exponential Affine
Manifold on the Gaussian space. The Gaussian assumption allows to discuss topics
that are not available in the general case, where the geometry of the sample space
has no role.

In particular, we have focused on the action of translations on the probability
densities of the manifold and on properties of their derivatives. Other related results,
such as Poincaré-type inequalities, have been discussed.

Intended applications are those already discussed in [10], in particular Hyvärinen
divergence and other statistical divergences involving derivatives, together with their
gradient flows.
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