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Recap: Standard Gaussian distribution
On the multivariate Gaussian distribution cf. handout 2.
Definition
e X ~N(0,1) if, and only if, its density is x — (27)~1/2e=x"/2,

o X =(Xi,...,x,) ~Nu(0,/) if, and only if, its components are
independent and N(0,1). Equivalently, the density is
x v (2m) "2~ IKIP/2.

Properties

e X ~ N,(0,/) if, and only if, the characteristic function is
t— elltl/2,

o If X ~N,(0,/) and U = [uy - - - u,] is unitary i.e. UTU = I, then
UX ~ N,(0,1).



Recap: General Gaussian Distribution

Definition

Let X ~ N,(0,/), p €R™, ACR™" ¥ = AAT | Y = p+ AX. T is
symmetric and positive definite. The distribution of Y depends on p and
> only. Such a distribution is Gaussian with mean p and variance ¥,

N (g, X).
Properties
1. Y ~Ny(p,X), b€ R™ B € R™", then

b+ AY ~ Np(b+ Bu, BEBT).

2. Given any p € R" and any symmetric positive definite ¥ € S, the
distribution N(p, X) exists.

3. The characteristic function of Y ~ N(, %) is
t—exp(p't+tTIt/2).

4. Y ~ N(p,X) if, and only if, all linear combinations }; a;Y; are
univariate Gaussian N(0,a” ~a).



Recap: Gaussian distribution properties

Density
If, and only if, Y ~ N(u, X) and det > # 0, then Y has a density, namely
y = (2m)""P(detT) M2 exp (—(y — )Ty — 1))

The concentration matrix K = £ ~1 is symmetric and positive definite.

Independence

If Y ~ N(p,X), the blocks Y; = (Y;: i€ l)and Y, =(Yj:j€J)are
independent if, and only if, Y; =0 forallie /, j € J.

Conditioning

If (Y, Y2) ~N ([’“} , [):11 ZUD, then the conditional distribution

p2| | X1 X
of Y7 given Y5 is

Np (1 + Lio(Yo — p2), X911 — L12¥01),  LioXop = 1.



Recap: Hilbert spaces

Scalar product

(x,y) — (x,y) is a scalar product on a real vector space V 3 x,y, i.e. a
symmetric bilinear mapping such that ||x||* = (x, x) > 0 unless x = 0.

1. x = ||Ix|| = /{x, x) is a norm. If the norm is complete, then
(V,{:,-)) is called an Hilbert space. E.g., L2[0 1] and L2(P).

2. yis N(0,1), V = L2(v) with ( = [f(z v(dz) is an
Hilbert space.

3. Let (¢n)nen be an orthonormal sequence in the Hilbert space. Then
the series Y7 a,¢, is convergent if, and only if Y2 a2 < +oc.
The limit f satisfies || f]|*> = 3°°, a2 and (f, ¢,) = a,, n € N.
(én)nen be an orthonormal basis if (f,¢,) =0, n € N implies f = 0.

4. Hermite polynomials H,(x) = §"1 are an ONB of L?(RR,7).
5. Given two vector spaces V/, W, each one having a scalar product, a

mapping A: V — W is called an isometry if (Ax, Ay),, = (X, ¥) v,
x,y € V. If Ais an isometry, then A is linear.



Wiener process = Brownian motion

Note: the filtration of the basis (Q, F,P, (F(t)¢>0)) on which a
stochastic process is defined could be larger than the filtration generated
by the process.

Definition
W is a Brownian motion for (Q2, F,P, (F(t)>0)) if W is a continuous
process, W: Q — C([0, +o0[), such that

1. W is adapted, i.e. W; is Fi-measurable, t > 0,
2. W starts from 0, i.,e. Wp =0 ass.,

3. the increments are Gaussian, precisely (W; — W,) ~ N(0,t — s),
0<s<t,

4. the increments are independent from the past history, i.e.
(W; — W) is independent of Fs, 0 <'s < t.



Basic properties of W

Theorem

1. The random variables Wy, (Wy, — Wy,), ... (W, — W,,_,) are
independent if 0 < t; < --- < t,.

2. The vector (Wy,,...,W; ), 0 < t; < --- < t,, has density

_n < _1 1 z Yi — Yj—1 2
Py sya) = 2m) E ] [(G—t1) "2 exp | —5 05 = %=1
j=1

2 j:]- tJ - tj*]-

3. W is Markov with kernel k(x,y) = f\}; exp (—% (yt_:;)Z).

4. W, (W2 —t)i~o, and (exp (aWt - a;t)) o ? €R, are
t=>
martingales.




Wiener integral: simple integrand

. For each left-continuous time interval ]a, b] € R, define

[P dW;, = [(a < t < b) dW; = Ws — W,, so that

fab dW; ~ N(0,t — s). If ]s1, 5] and ]t1, to] are left-continuous
intervals, then

E((/(51<t§52)th> (/(t1<t§t2)th)>:

/(51 <t<g)(t1 <t<t)dt

. On each left-continuous simple function
f(t) =271, fimi(ti-1 < t < tj), define
‘
JF) dWe =320, 6 [, dW; ~N(O, [ |F(t)° dt). If f and g
are left-continuous simple functions, then

([ o am) (f et om)) = ] e

. The mapping f — [ f(t) dW, is linear.



Wiener integral of L? functions

General integrand

1.

Given any f € L2([0,+oc[), there exists a sequence of
left-continuous simple functions (f,)qen such that lim,_ o f, = f in

L2([0, +o0), ie. limy oo [|F(t) = f(t)]> dt =0.

J£(t) dWs = limysoo [ fo(t) dW; exists in L2(Q, F,P), i.e.
limpoo B ((f £(t) dW; — [ fo(t) dW;)) = 0, and the limit does
not depend on the approximating sequence.

Jf(t) dW; ~ N (O,f |F(t) dt); for each f, g € L?([0, +00]), the

i;,olr:;etric property E (( [ f(t) dW;) ([ g(t) dW;)) = [ f(t)g(t) dt

The mapping f — [ f(t) dW, is linear.
(fot f(s) dWs) o has independent increments.
t>

There eX|sts a contlnuous stochastic process f e W such that
feW), = fo ) dWs (From Doob's maximal inequality).



Calculus of the Wiener integral
Properties

1. If £ € L2(]0, +oo[) N C([0, +o0]), then
I|mz (W, — Wtjfl):/f(t) dWw,,

where the limit is taken along any sequence of partition such that
max(tj — t;) — 0 and t, — oo.

2. If f € L(]0, +o0[) N CL(]0, +c), then

t t
/ F(u) dW, = F()W; — F(s)W,s —/ F(u)W, du.
3. If ((b,ﬂ,),,ez+ is an orthonormal basis of L3([0,1]) and

fo ®n(s) ds for 0 < t < 1, then there exists a Gaussian
Whlte noise Zo,Zl,Zg, ... such that W, = 3" as(t)Z, in

L2(Q, F,P), namely Z, = [ ¢q(t) dW;.



Haar functions

. Haar functions are hg =1, h1 1 =

05 -

‘
‘
1

wpb——20 ; -]
‘
‘
‘
‘

10 = o——0 7]

-5 - 1

hl,n(t) = 2(”_1)/2h1’1(2_n+1t), hj’n(t) = j,l(t — 2_j+1), that is for
n>1landj=1,...,2" 1

20D/ f D <y 2

hjo(t) = { —20=1/2 21 1 <t< 32,

2nv

0 otherwnse.

. The Haar function h; , is zero outside the interval [2(’ 1) g—f ,

whose length is 271, and where the value is +2("=1)/2,



Haar basis

left.limit.haar <-
function(j,n){L1 <- c(2*%(j-1)/2"n,sqrt(27(n-1))) “7
L2 <- c((2xj-1)/2"n,-sqrt (2" (n-1)))
L3 <- c(2%j/27n,0)
Ls <- c(L1,L2,L3); Ls
}
Ls <- left.limit.haar(4,4) -4
x <- c(-.5,Ls[1],Ls[3],Ls[5],1.5)
y <- ¢(0,Ls[2],Ls[4],Ls[6],0) 1
plot(x,y,type="s",xlab="",ylab="")

1. The system (ho, hj,: n € N,j =1,2,...2"1) is an orthonormal
basis of L2[0, 1].

2. The primitives of the Haar functions are the Shauder functions and
are tent functions:

@
i = n— 2j e 2j—1 2j
/Ohlv”(u) du=q -2V (- Z) it <<,

0 otherwise.



Existence of the Wiener process

On the construction of the Wiener process see [KS]

Theorem
Let Zy,Zj,, n=1,2,... and j=1,...,2"1 be IID N(0,1). Define for
each n=1,2,... the continuous Gaussian process

WN = FoZy + > n<n FinZjn.

1. The sequence (WN)yen converges uniformly almost surely to a
continuous process W.

2. For each t the sequence of random variables (W"(t))nen converges
to W(t) almost surely and in L>(P), and W(t) ~ (0, t).

3. The continuous process is Gaussian, i.e. all finite dimensional
distribution are multivariate Gaussian.

4. Increments over two disjoint intervals of W are uncorrelated, hence
independent.

5. W is a Wiener process for the filtration it generates.



Orstein-Uhlembeck process

Definition
Given a Wiener process W and constant 6,0 > 0, i € R, the
Ornstein-Uhlembeck process is (X)¢>0 unique strong solution of

dXX = 0(u — XX)dt + odW,, X§ = x

1. We focus on the standard case dX; = —X;dt + V2W,, X5 =0,
precisely

t
X;:x—/ X, du+V2W,, t>0
0

2. The unique strong solution is

t
X =e 'x+ \@/ e (573) aw,
0

where the stochastic integral is a Wiener integral.



Proof

Cet XX+ et fot X, du = etx + v/2et W,

. % (et fot X, du) = efx + 2et W,

et fot X, du= (et —1)x + \ﬁfot esW; ds
Cfi Xudu=(1—e)x+ V2t [ W, ds

t
X =e tx — ﬁe*t/ W, ds +V2e tet W,
0

t
=e tx 4+ V2t <et W, — / e* W, ds)
0

t
=e x4+ \ﬁ/ e (=) gy,
0



Distribution of the OU

e Each X is Gaussian with mean E (X}) = e~ 'x and variance

Var (XX) = 2E ((/Ote—“—” dWs>2> —

t
/ 2672“75) ds = 672(1“75)
0

=1—¢2%
s=0

e For t > s the covariance is

t s
Cov (X[, X ) =2E <(/ e (t—u) qu> (/ e~ (s—u) qu)>
) 0 0
= 2/ e (tme=(=u) gy
0
—s—t 2u|”:5

u=0
— e—(t—s) _ e—(t+s) — e—2(t—s)(1 _ e—25)

=e

e OU (X{)¢>0 is a continuous adapted Gaussian process. Note that
o(XF:s<t)y=o(WS:s<t).



OU is Markov |

o Ifs<t
Xx —s 1—e 25 ef(tfs)ef2s
- (s )
hence
XX = y) o Ny (70727 1 = 2079
so that

B(FORI0G =) = [ Fe oy 4+ V1= e X2y (de)

e We have XX ~ e x4+ /1 —e 2tZ, hence we define the family of
operators P, t > 0,

(PF)(X) = E (Fle™x+ V1 - e22)) =
1 12

fle "™x+V1—e2tz) e 7 dz
V2r




OU is Markov I

e Markov property:
E (f(X7)|F5)
t
—E <f(e—’-‘x + f2/ e~ 79 dW)
0

%)

s t

=F (f(e_tx + \@/ e~ aw, + \@/ e~ (7) dw) ]:5>
0 s

N /f(e_tx + \fz/ ¢~ AW, + /1 — e=2(t=9)7) +(dz2)
0

- / Fle X+ V1 — e 2e9)2) (dz)
- (Ptfsf)(XsX)

® (Pt)e>o is a semigroup, Ps o Pe_s = Py if s < t, of contraction
operators on L2(7)



