Stochastic Processes and Calculus 2016

Wiener Process

Giovanni Pistone

Collegio Carlo Alberto

May 2016 v01

References

- On multivariate Gaussian: Handout 1;
- On Martingales: Part B of David Williams, Probability with martingales, Cambridge Mathematical Textbooks, Cambridge University Press, Cambridge, 1991;
- On Wiener calculus: Ch 4 of Robert S. Liptser and Albert N. Shiryaev, Statistics of random processes. I, expanded ed., Applications of Mathematics (New York), vol. 5, Springer-Verlag, Berlin, 2001, General theory, Translated from the 1974 Russian original by A. B. Aries, Stochastic Modelling and Applied Probability. 1800857;
- On Ornstein-Uhlembeck process: Handout 2.

Recap: Standard Gaussian distribution

On the multivariate Gaussian distribution cf. handout 2.

Definition

- $X \sim N(0,1)$ if, and only if, its density is $x \mapsto (2\pi)^{-1/2} e^{-x^2/2}$.
- $\mathbf{X} = (X_1, \dots, x_n) \sim \mathsf{N}_n(0, I)$ if, and only if, its components are independent and $\mathsf{N}(0, 1)$. Equivalently, the density is $\mathbf{x} \mapsto (2\pi)^{-n/2} \mathrm{e}^{-\|\mathbf{x}\|^2/2}$.

Properties

- $\boldsymbol{X} \sim N_n(0,I)$ if, and only if, the characteristic function is $\boldsymbol{t} \mapsto \mathrm{e}^{\|\boldsymbol{t}\|/2}$.
- If $\boldsymbol{X} \sim N_n(0, I)$ and $U = [\boldsymbol{u}_1 \cdots \boldsymbol{u}_n]$ is unitary i.e. $U^T U = I$, then $U \boldsymbol{X} \sim N_n(0, I)$.

Recap: General Gaussian Distribution

Definition

Let $\boldsymbol{X} \sim N_n(0,I)$, $\boldsymbol{\mu} \in \mathbb{R}^m$, $\boldsymbol{A} \in \mathbb{R}^{m \times n}$, $\boldsymbol{\Sigma} = \boldsymbol{A}\boldsymbol{A}^T$, $\boldsymbol{Y} = \boldsymbol{\mu} + \boldsymbol{A}\boldsymbol{X}$. $\boldsymbol{\Sigma}$ is symmetric and positive definite. The distribution of \boldsymbol{Y} depends on $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$ only. Such a distribution is Gaussian with mean $\boldsymbol{\mu}$ and variance $\boldsymbol{\Sigma}$, $N_m(\boldsymbol{\mu},\boldsymbol{\Sigma})$.

Properties

- 1. If $\mathbf{Y} \sim N_n(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, $\mathbf{b} \in \mathbb{R}^m$, $B \in \mathbb{R}^{m \times n}$, then $\mathbf{b} + A\mathbf{Y} \sim N_m(\mathbf{b} + B\boldsymbol{\mu}, B\boldsymbol{\Sigma}B^T)$.
- 2. Given any $\mu \in \mathbb{R}^n$ and any symmetric positive definite $\Sigma \in S_n^+$, the distribution $N(\mu, \Sigma)$ exists.
- 3. The characteristic function of $\mathbf{Y} \sim \mathsf{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ is $\mathbf{t} \mapsto \exp(\boldsymbol{\mu}^T \mathbf{t} + \mathbf{t}^T \boldsymbol{\Sigma} \mathbf{t}/2)$.
- 4. $\mathbf{Y} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ if, and only if, all linear combinations $\sum_j a_j Y_j$ are univariate Gaussian $N(0, \boldsymbol{a}^T \boldsymbol{\Sigma} \boldsymbol{a})$.

Recap: Gaussian distribution properties

Density

If, and only if, $Y \sim \mathsf{N}(\mu, \Sigma)$ and $\det \Sigma \neq 0$, then Y has a density, namely

$$\mathbf{y} \mapsto (2\pi)^{-n/2} (\det \Sigma)^{-1/2} \exp \left(-(\mathbf{y} - \boldsymbol{\mu})^T \Sigma^{-1} (\mathbf{y} - \boldsymbol{\mu}) \right)$$

The concentration matrix $K = \Sigma^{-1}$ is symmetric and positive definite.

Independence

If $\mathbf{Y} \sim \mathsf{N}(\mu, \Sigma)$, the blocks $\mathbf{Y}_I = (Y_i \colon i \in I)$ and $\mathbf{Y}_J = (Y_j \colon j \in J)$ are independent if, and only if, $\Sigma_{ij} = 0$ for all $i \in I$, $j \in J$.

Conditioning

If
$$(\mathbf{Y}_1, \mathbf{Y}_2) \sim \mathsf{N}\left(\begin{bmatrix} \boldsymbol{\mu}_1 \\ \boldsymbol{\mu}_2 \end{bmatrix}, \begin{bmatrix} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{bmatrix}\right)$$
, then the conditional distribution of \mathbf{Y}_1 given \mathbf{Y}_2 is

$$\mathsf{N}_{n_1} \left(\mu_1 + \mathit{L}_{12} (\mathbf{Y}_2 - \mu_2), \Sigma_{11} - \mathit{L}_{12} \Sigma_{21} \right), \quad \mathit{L}_{12} \Sigma_{22} = \Sigma_{12}.$$

Recap: Hilbert spaces

Scalar product

 $(x,y)\mapsto \langle x,y\rangle$ is a scalar product on a real vector space $V\ni x,y$, i.e. a symmetric bilinear mapping such that $\|x\|^2=\langle x,x\rangle>0$ unless x=0.

- 1. $x \mapsto ||x|| = \sqrt{\langle x, x \rangle}$ is a norm. If the norm is complete, then $(V, \langle \cdot, \cdot \rangle)$ is called an Hilbert space. E.g., $L^2[0, 1]$ and $L^2(\mathbb{P})$.
- 2. γ is N(0,1), $V=L^2(\gamma)$ with $\langle f,g\rangle_{\gamma}=\int f(z)g(z)~\gamma(dz)$ is an Hilbert space.
- 3. Let $(\phi_n)_{n\in\mathbb{N}}$ be an orthonormal sequence in the Hilbert space. Then the series $\sum_{n=1}^{\infty} a_n \phi_n$ is convergent if, and only if $\sum_{n=1}^{\infty} a_n^2 < +\infty$. The limit f satisfies $\|f\|^2 = \sum_{n=1}^{\infty} a_n^2$ and $\langle f, \phi_n \rangle = a_n$, $n \in \mathbb{N}$. $(\phi_n)_{n\in\mathbb{N}}$ be an orthonormal basis if $\langle f, \phi_n \rangle = 0$, $n \in \mathbb{N}$ implies f = 0.
- 4. Hermite polynomials $H_n(x) = \delta^n 1$ are an ONB of $L^2(\mathbb{R}, \gamma)$.
- 5. Given two vector spaces V, W, each one having a scalar product, a mapping $A \colon V \to W$ is called an isometry if $\langle Ax, Ay \rangle_W = \langle x, y \rangle_V$, $x, y \in V$. If A is an isometry, then A is linear.

Wiener process = Brownian motion

Note: the filtration of the basis $(\Omega, \mathcal{F}, \mathbb{P}, (\mathcal{F}(t)_{t\geq 0}))$ on which a stochastic process is defined could be larger than the filtration generated by the process.

Definition

W is a Brownian motion for $(\Omega, \mathcal{F}, \mathbb{P}, (\mathcal{F}(t)_{t\geq 0}))$ if W is a continuous process, $W: \Omega \to C([0, +\infty[), \text{ such that}]$

- 1. W is adapted, i.e. W_t is \mathcal{F}_t -measurable, t > 0,
- 2. W starts from 0, i.e. $W_0 = 0$ a.s.,
- 3. the increments are Gaussian, precisely $(W_t W_s) \sim N(0, t s)$, $0 \le s < t$,
- 4. the increments are independent from the past history, i.e. $(W_t W_s)$ is independent of \mathcal{F}_s , $0 \le s < t$.

Basic properties of W

Theorem

- 1. The random variables W_{t_1} , $(W_{t_2} W_{t_1})$, ... $(W_{t_n} W_{t_{n-1}})$ are independent if $0 < t_1 < \cdots < t_n$.
- 2. The vector $(W_{t_1}, \ldots, W_{t_n})$, $0 < t_1 < \cdots < t_n$, has density

$$p(y_1,\ldots,y_n)=(2\pi)^{-\frac{n}{2}}\prod_{j=1}^n(t_j-t_{j-1})^{-\frac{1}{2}}\exp\left(-\frac{1}{2}\sum_{j=1}^n\frac{(y_j-y_{j-1})^2}{t_j-t_{j-1}}\right).$$

- 3. W is Markov with kernel $k(x,y) = \frac{1}{2\pi\sqrt{t-s}} \exp\left(-\frac{1}{2}\frac{(y-x)^2}{t-s}\right)$.
- 4. W, $(W_t^2 t)_{t>0}$, and $\left(\exp\left(aW_t \frac{a^2}{2}t\right)\right)_{t\geq0}$, $a \in \mathbb{R}$, are martingales.

Wiener integral: simple integrand

1. For each left-continuous time interval $]a,b] \in \mathbb{R}_+$, define $\int_a^b dW_t = \int (a < t \le b) \ dW_t = W_b - W_a$, so that $\int_a^b dW_t \sim \mathsf{N}(0,t-s)$. If $]s_1,s_2]$ and $]t_1,t_2]$ are left-continuous intervals, then

$$\mathbb{E}\left(\left(\int (s_1 < t \le s_2) \ dW_t\right) \left(\int (t_1 < t \le t_2) \ dW_t\right)\right) =$$

$$\int (s_1 < t \le s_2)(t_1 < t \le t_2) \ dt$$

2. On each left-continuous simple function $f(t) = \sum_{j=1}^n f_{j-1}(t_{j-1} < t \le t_j)$, define $\int f(t) \ dW_t = \sum_{j=1}^n f_{j-1} \int_{t_{j-1}}^{t_j} dW_t \sim \mathsf{N}(0, \int |f(t)|^2 \ dt)$. If f and g are left-continuous simple functions, then

$$\mathbb{E}\left(\left(\int f(t)\ dW_t\right)\left(\int g(t)\ dW_t\right)\right) = \int f(t)g(t)\ dt$$

3. The mapping $f \mapsto \int f(t) dW_t$ is linear.

Wiener integral of L^2 functions

General integrand

- 1. Given any $f \in L^2([0,+\infty[),$ there exists a sequence of left-continuous simple functions $(f_n)_{n\in\mathbb{N}}$ such that $\lim_{n\to\infty} f_n = f$ in $L^2([0,+\infty[),$ i.e. $\lim_{n\to\infty}\int |f(t)-f_n(t)|^2 \ dt = 0$.
- 2. $\int f(t) \ dW_t = \lim_{n \to \infty} \int f_n(t) \ dW_t$ exists in $L^2(\Omega, \mathcal{F}, \mathbb{P})$, i.e. $\lim_{n \to \infty} \mathbb{E}\left(\left(\int f(t) \ dW_t \int f_n(t) \ dW_t\right)\right) = 0$, and the limit does not depend on the approximating sequence.
- 3. $\int f(t) \ dW_t \sim \mathbb{N}\left(0, \int |f(t)|^2 \ dt\right)$; for each $f, g \in L^2([0, +\infty[), \text{ the isometric property } \mathbb{E}\left(\left(\int f(t) \ dW_t\right)\left(\int g(t) \ dW_t\right)\right) = \int f(t)g(t) \ dt$ holds.
- 4. The mapping $f \mapsto \int f(t) dW_t$ is linear.
- 5. $\left(\int_0^t f(s) dW_s\right)_{t>0}$ has independent increments.
- 6. There exists a continuous stochastic process $f \bullet W$ such that $(f \bullet W)_t = \int_0^t f(s) \ dW_s$ (From Doob's maximal inequality).

Calculus of the Wiener integral

Properties

1. If $f \in L^2([0, +\infty[) \cap C([0, +\infty[), \text{ then })])$

$$\lim \sum_{i} f(t_{j_1})(W_{t_j} - W_{t_{j-1}}) = \int f(t) \ dW_t,$$

where the limit is taken along any sequence of partition such that $\max(t_i - t_{i_1}) \to 0$ and $t_n \to \infty$.

2. If $f \in L^2([0, +\infty[) \cap C^1([0, +\infty[), \text{ then }$

$$\int_{s}^{t} f(u) dW_{u} = f(t)W_{t} - f(s)W_{s} - \int_{s}^{t} f'(u)W_{u} du.$$

3. If $(\phi_n)_{n\in\mathbb{Z}_+}$ is an orthonormal basis of $L^2([0,1])$ and $a_n(t)=\int_0^t\phi_n(s)\ ds$ for $0\leq t\leq 1$, then there exists a Gaussian white noise Z_0,Z_1,Z_2,\ldots such that $W_t=\sum_n a_n(t)Z_n$ in $L^2(\Omega,\mathcal{F},\mathbb{P})$, namely $Z_n=\int_0^1\phi_n(t)\ dW_t$.

Haar functions

$$h_{1,n}(t)=2^{(n-1)/2}h_{1,1}(2^{-n+1}t), \ h_{j,n}(t)=h_{j,1}(t-2^{-j+1}),$$
 that is for $n\geq 1$ and $j=1,\ldots,2^{n-1},$

$$h_{j,n}(t) = \begin{cases} 2^{(n-1)/2} & \text{if } \frac{2(j-1)}{2^n} \le t < \frac{2j-1}{2^n}, \\ -2^{(n-1)/2} & \text{if } \frac{2j-1}{2^n} \le t < \frac{2j}{2^n}, \\ 0 & \text{otherwise.} \end{cases}$$

2. The Haar function $h_{j,n}$ is zero outside the interval $\left\lfloor \frac{2(j-1)}{2^n}, \frac{2j}{2^n} \right\rfloor$, whose length is 2^{-n+1} , and where the value is $\pm 2^{(n-1)/2}$.

Haar basis

- 1. The system $(h_0, h_{j,n}: n \in \mathbb{N}, j = 1, 2, \dots 2^{n-1})$ is an orthonormal basis of $L^2[0, 1]$.
- 2. The primitives of the Haar functions are the Shauder functions and are tent functions:

$$\int_0^t h_{j,n}(u) \ du = \begin{cases} 2^{(n-1)/2} \left(t - \frac{2(j-1)}{2^n} \right) & \text{if } \frac{2(j-1)}{2^n} \le t < \frac{2j-1}{2^n}, \\ -2^{(n-1)/2} \left(t - \frac{2j}{2^n} \right) & \text{if } \frac{2j-1}{2^n} \le t < \frac{2j}{2^n}, \\ 0 & \text{otherwise.} \end{cases}$$

Existence of the Wiener process

On the construction of the Wiener process see [KS]

Theorem

Let $Z_0, Z_{j,n}$, n = 1, 2, ... and $j = 1, ..., 2^{n-1}$ be IID N(0, 1). Define for each n = 1, 2, ... the continuous Gaussian process $W^N = F_0 Z_0 + \sum_{n \le N} F_{j,n} Z_{j,n}$.

- 1. The sequence $(W^N)_{N\in\mathbb{N}}$ converges uniformly almost surely to a continuous process W.
- 2. For each t the sequence of random variables $(W^N(t))_{N\in\mathbb{N}}$ converges to W(t) almost surely and in $L^2(\mathbb{P})$, and $W(t) \sim (0,t)$.
- 3. The continuous process is Gaussian, i.e. all finite dimensional distribution are multivariate Gaussian.
- 4. Increments over two disjoint intervals of W are uncorrelated, hence independent.
- 5. W is a Wiener process for the filtration it generates.

Orstein-Uhlembeck process

Definition

Given a Wiener process W and constant $\theta, \sigma > 0$, $\mu \in \mathbb{R}$, the Ornstein-Uhlembeck process is $(X_t^x)_{t \geq 0}$ unique strong solution of

$$dX_t^x = \theta(\mu - X_t^x)dt + \sigma dW_t, \quad X_0^x = x$$

1. We focus on the standard case $dX_t^x = -X_t dt + \sqrt{2}W_t$, $X_0^x = 0$, precisely

$$X_t^{\mathsf{x}} = \mathsf{x} - \int_0^t \mathsf{X}_u \; d\mathsf{u} + \sqrt{2} W_t, \quad t \ge 0$$

2. The unique strong solution is

$$X_t^{\mathsf{x}} = \mathrm{e}^{-t} \mathsf{x} + \sqrt{2} \int_0^t \mathrm{e}^{-(t-s)} \ dW_s$$

where the stochastic integral is a Wiener integral.

Proof

1.
$$e^t X_t^x + e^t \int_0^t X_u \ du = e^t x + \sqrt{2} e^t W_t$$

2.
$$\frac{d}{dt} \left(e^t \int_0^t X_u \ du \right) = e^t x + \sqrt{2} e^t W_t$$

3.
$$e^t \int_0^t X_u \ du = (e^t - 1)x + \sqrt{2} \int_0^t e^s W_s \ ds$$

4.
$$\int_0^t X_u \ du = (1 - e^{-t})x + \sqrt{2}e^{-t} \int_0^t e^s W_s \ ds$$

$$X_{t} = e^{-t}x - \sqrt{2}e^{-t} \int_{0}^{t} e^{s}W_{s} ds + \sqrt{2}e^{-t}e^{t}W_{t}$$

$$= e^{-t}x + \sqrt{2}e^{-t} \left(e^{t}W_{t} - \int_{0}^{t} e^{s}W_{s} ds\right)$$

$$= e^{-t}x + \sqrt{2} \int_{0}^{t} e^{-(t-s)} dW_{s}$$

Distribution of the OU

• Each X_t^x is Gaussian with mean $\mathbb{E}(X_t^x) = e^{-t}x$ and variance

$$\operatorname{Var}(X_t^{\mathsf{x}}) = 2 \mathbb{E}\left(\left(\int_0^t \mathrm{e}^{-(t-s)} \ dW_s\right)^2\right) = \int_0^t 2\mathrm{e}^{-2(t-s)} \ ds = \left.\mathrm{e}^{-2(t-s)}\right|_{s=0}^{s=t} = 1 - \mathrm{e}^{-2t}$$

• For t > s the covariance is

$$\operatorname{Cov}(X_{t}^{\times}, X_{s}^{\times}) = 2 \mathbb{E}\left(\left(\int_{0}^{t} e^{-(t-u)} dW_{u}\right) \left(\int_{0}^{s} e^{-(s-u)} dW_{u}\right)\right)$$

$$= 2 \int_{0}^{s} e^{-(t-u)} e^{-(s-u)} du$$

$$= e^{-s-t} e^{2u} \Big|_{u=0}^{u=s}$$

$$= e^{-(t-s)} - e^{-(t+s)} = e^{-2(t-s)} (1 - e^{-2s})$$

• OU $(X_t^{\times})_{t\geq 0}$ is a continuous adapted Gaussian process. Note that $\sigma(X_s^{\times}: s \leq t) = \sigma(W_s^{\times}: s \leq t)$.

OU is Markov I

If s < t

$$\begin{bmatrix} X_s^x \\ X_t^x \end{bmatrix} \sim \mathsf{N}_2 \left(\begin{bmatrix} \mathrm{e}^{-s} \\ \mathrm{e}^{-t} \end{bmatrix} x, \begin{bmatrix} 1 - \mathrm{e}^{-2s} & \mathrm{e}^{-(t-s)} \mathrm{e}^{-2s} \\ \mathrm{e}^{-(t-s)} \mathrm{e}^{-2s} & 1 - \mathrm{e}^{-2t} \end{bmatrix} \right)$$

hence

$$X_t^{\mathsf{x}}|(X_s^{\mathsf{x}} = y) \sim \mathsf{N}_1\left(\mathrm{e}^{-(t-s)y}, 1 - \mathrm{e}^{-2(t-s)}\right)$$

so that

$$\mathbb{E}\left(f(X_t^{\mathsf{x}})|(X_s^{\mathsf{x}}=y)\right) = \int f(\mathrm{e}^{-(t-s)}y + \sqrt{1-\mathrm{e}^{-2(t-s)}}z)\gamma(dz)$$

• We have $X_t^{\rm x}\sim {\rm e}^{-t}x+\sqrt{1-{\rm e}^{-2t}}Z$, hence we define the family of operators $P_t,\ t\geq 0$,

$$(P_t f)(x) = \mathbb{E}\left(f(e^{-t}x + \sqrt{1 - e^{-2t}}Z)\right) = \int f(e^{-t}x + \sqrt{1 - e^{-2t}}z)\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}z^2} dz$$

OU is Markov II

• Markov property:

$$\begin{split} &\mathbb{E}\left(f(X_{t}^{x})|\mathcal{F}_{s}\right) \\ &= \mathbb{E}\left(f(e^{-t}x + \sqrt{2}\int_{0}^{t}e^{-(t-s)}dW_{s})\Big|\mathcal{F}_{s}\right) \\ &= \mathbb{E}\left(f(e^{-t}x + \sqrt{2}\int_{0}^{s}e^{-(t-s)}dW_{s} + \sqrt{2}\int_{s}^{t}e^{-(t-s)}dW_{s})\Big|\mathcal{F}_{s}\right) \\ &= \int f(e^{-t}x + \sqrt{2}\int_{0}^{s}e^{-(t-s)}dW_{s} + \sqrt{1 - e^{-2(t-s)}z})\gamma(dz) \\ &= \int f(e^{-(t-s)}X_{s}^{x} + \sqrt{1 - e^{-2(t-s)}z})\gamma(dz) \\ &= (P_{t-s}f)(X_{s}^{x}) \end{split}$$

• $(P_t)_{t\geq 0}$ is a semigroup, $P_s\circ P_{t-s}=P_t$ if $s\leq t$, of contraction operators on $L^2(\gamma)$