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1. REcAP

1. The real random variable Z is standard Gaussian, Z ~ Ny (0,1) if its distribution v has
density

1
R3azm ¢(z) = (277)_% exp <—222>
with respect to the Lebesgue measure.

2. The R™-valued random variable Z = (Z1,...,Z,) is standard Gaussian, Z ~ N, (0,,, I,,) if
its components are IID Ny (0,1).

3.
(1) The distribution v, = ¥®" of Z ~ N, (0, 1) has the product density

n _g 1
B3 2 0(2) = [ [ olas) = (2n) % exp (~3 1)
j=1
(2) The moment generating function ¢t — E(exp (t- Z)) € Rx s
“ 1 1
R"st— My(t) = jlj[lexp (2t12> = exp (2 Ht2>

My is everywhere strictly convex and analytic.
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(3) The characteristic function ¢ — ¥,(¢) = E (exp (v/=1(- Z)) € C is

2 1 1
B2 ¢ 5,(6) = [Teoxw (—3¢2) = v (5 161P)
j=1

Fn 18 nonnegative definite and analytic.

(1) Let Z ~ N, (0,1), Ac R™" beR™ ¥ = AAT. ThenY = b+ AZ has a distribution
that depends on I' and b only. The distribution of Y is Gaussian with mean b and
variance X, Ny, (b, 3).

(2) Given any non-negative definite X, there exists matrices A such that ¥ = AAT.

(3) If det () # 0, then the distribution of Y = b+ AZ ~ N, (b,%), Ae R™*m AAT =%,
has a density given by

R™ 3y py(y) = |det (A1) p(A (y — b)) =

(2% det () exp (— 50— 0TS - 0)

2. CONDITIONING
Proposition 1. Consider a partitioned Gaussian vector
[ bi| [X11 212
v e (][5 32)
Let r; = Rank (X;;) and i = U; ;UL with U; € RMX7i 0 A; € R7%7i positive diagonal, i = 1,2.
(1) The blocks Y1, Yo are independent, say Y1 1L Ys, if, and only if, 12 = 0 and Xo1 = 0.

More precisely, if, and only if, there exist two independent standard Gaussian Z; ~
N,, (0,1) and Zy ~ N,, (0,1) and matrices Ay, As such that

Yi=b+ 4171,
Yo =bo + AsZs .
(2) Define %23, = UsA;'UT. The Gaussian random vector with components
Vi =Y) — (b1 + Lia(Ya—by)), L1z = Y1255,
Yo = Ya — by
18 such that E <}~/1) =0, Var (171) =X — 212232221, and }71 1 172 It follows
E(V1[Y2) = b1 + L12(Y2 — b2)
(3) The conditional distribution of Y1 given Ya = yo is Gaussian with
Y1|(Yz = y2) ~ Nay (b1 + Li2(y2 — b2), X11 — L12301)

(4) Assume det (X) # 0. Then both det (S1) # 0 and det (X),y # 0. If we define the
partitioned concentration to be

ol = Ki1 Kia
Ko1 Koo

then K11 = Ei; and KﬁlKlg = —2122521, so that the conditional density of Y1 given

Yo = yo in terms of the partitioned concentration is

_m 1
Py, (W1 ly2) = (2m) 72 det (Kqpp) % x

1 _ _
exp (—2(y1 — by — K Kia(y2 — b)) Ky (y1 — by — K K12(ya — bz)))
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Proof of . If the blocks are independent, they are uncorrelated. Viceversa, assume Y15 = 0
and Yo; = ZlTQ = 0. As X;; are nonnegative definite, i = 1,2, there are spectral decompositions
Y11 = UM UL, S99 = UsAyUY, with U; € R *™ UUL = I, and A; positive diagonal, i = 1, 2.
We define

A =UA?, ar = a7PUT

so that AiAZ-T = ¥, and A:rziiAjT = I,,, i = 1,2. The Gaussian random vector
Zi] _[AT o0 |[vi—-b
Zo| | 0 AT ||Ya— by

is Nyy4ro (0, Iry 4), in particular Z; 1L Z;. We have

AiZy = AiAT (Y = b) = UUT (Y = by) = Y — b

because UiUZ»T is the orthogonal projection of R™ on the subspace of the values of the random

vector Y;, ¢ = 1,2. In conclusion, for ¢ = 1, 2 there exist independent white noise presentations.
O

Proof of . We start with an algebraic property sometimes called Schur complement lemma.
Write X3, = Us A5 'UJ and compute

I —Spsh][En S I o]
0 I So1 Soo| |-SHSwm 1|
Y11 — X19X 51 Xig — T1oXeaXs, I 0] _
Y1 bD) —Y5Ya I

Y1 — 212X 53 0
0 Y9

where we have used the equalities 222232232 = E;z, 232222222 = Yoo, (I — 222232)221 = 0.
In particular, the last one depends on UsUJ being the orthogonal projection on the support of
Ys.

The matrix Yip = %11 — 212232221 is sometimes called the Schur complement of the parti-
tioned matrix. From the computation above we see that the Schur complement is nonnegative

definite and that
Y11 X2\
det <[221 222}> = det (212) det (222) .

It follows that det (X) # 0 implies both det (31)5) # 0 and det (¥22) # 0.
We have N
V][ -sesh|[vi-b] Ly o [Z 0
%l o I Yo —by| T2\l g7 m,,
It follows

E(Yi|Ys) = E (171 4 by 4 Lia(Ya — bg)‘YQ) —E (57’1) 4 by + Lia(Ya — b)
0

Proof of . The conditional distribution of Y; given Y5 is a transition probability py, |y, : B(R™)x
R™ guch that for all bounded f: R™

B(DIY) = [ £01) vy i)
We have
B(/(V)[¥) = E (77 + EM¥a)[¥2) = [ f(o+ E(ViI¥2) 1(dwi0,E4p)

where v(dx; 0, Xy)3) is the measure of N, (0, 21‘2). We obtain the statement by considering the
effect on the distribution N, (O, El|2) of the translation x — x + (b1 + L12(y2 — b2)). O

3



Proof of (4)). A further application of the Schur complement gives

Y Y| _ |1 10850 | [Z12 O I 0
Yo1 Yoo 0 I 0 x| |SuSa I

whose inverse is

Ky K| _[ I 0] [Z52 O |[I —Sxy
Ko Kp| |33 I|| 0 %30 I
B -1 —
_ 22 0 [I —2122221}
~E3 Bn%, ¥a | [0 I
B -1 -1 —1
_ E1\2 _21\2212222
~T5 TSy, Tp EaX Tty +

In particular, we have K11 = Yol and KﬂlKlg = —21222_21, hence

12
Yi[(Yz = y2) ~ Ny (b1 = K~ ' Ki2(y2 — b2), K1y
so that the exponent of the Gaussian density has the factor

(y1 — by + K Ki2(ya — b2)) T Ky1(y1 — b1 + K1 Ki2(y2 — b2))

3. CONDITIONAL INDEPENDENCE

Conditional independence is a key property in Statistics e.g. Graphical Models, in Stochastic
Processes e.g., Markov processes, in Random Fields, in Machine Learning.
Definition 1.

(1) The nonzero events A, B, C are such that A and C are independent given B, A1 C| B,
if each one of the following equivalent conditions are satisfied:

P(AnC|B) =P (A|B)P(C|B)
P(A|IBnC) =P (A|B)
P(AnBnC)P(B)=P(AnB)P(BnC)
(2) Random variables Y7, Y3 are conditionally independent given the random variable Y3,

Y1 1 Y3|Ys if each one of the following equivalent conditions are satisfied. If f;, i =
1,...,3, are bounded,

E (fi(V1)f3(Y3)[Y2) = E (f1(Y1)[Y2) E (f5(Y3)[Y2)
E (f1(Y1)[Y2,Y3) = E(f1(Y1)|Y2)

Errata: the equality
E (f1(11)f2(Y2) f3(Y3)) E (f2(Y2)) = E (f1(Y1) f2(Y2)) E (f2(Y2) f3(Y3))

is not implied by conditional independence for all fs, as it can be seen by taking fo = 1. It is
true for some fo(Y2).

Proposition 2. Let be given

Yi by Y11 Y12 X3
Y =Y | ~Npitngtns | |02], |21 X2 Yo
Y3 b3 Y31 Y32 X33

We have Y1 1LY3|Ys if, and only if, 13 = 212232223. In such a case,
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Y] b by by 0
] 02 =~ N (2] [32] Bt [ 0 ])

Vi|(Y2 = y2,Ys = y3) = Y1|(Y2 = 12) ~ Ny, (b1 + 21253, (y2 — b2), Z1)2)
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HoME WORK
Read all the texts below, then chose and solve 2 exercises. The paper is due Fri May 22.

Ezercise 1. Derive in detail the conditional density of Proposition for the bi- and tri-variate
Gaussian distribution.

Ezercise 2. Prove the equivalences in Definition
Ezercise 3. Derive in detail the two forms of the conditional independence in Proposition [2| for

the tri-variate Gaussian distribution.

COLLEGIO CARLO ALBERTO
E-mail address: giovanni.pistone@carloalberto.org
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