STOCHASTIC PROCESSES 2015

1. ONE-DIMENSIONAL GAUSSIAN SPACE

GIOVANNI PISTONE

CONTENTS

References		1
1.	1-dimensional Gaussian space	1
2.	Hermite polynomials	2
3.	Derivation operator and divergence operator	3
4.	Ornstein-Uhlenbeck semigroup and operator	4
5.	Applications	4
Ho	ome work	5

References

M95-V: See Ch V of Paul Malliavin, *Integration and probability*, Graduate Texts in Mathematics, vol. 157, Springer-Verlag, New York, 1995, With the collaboration of Hélène Airault, Leslie Kay and Gérard Letac, Edited and translated from the French by Kay, With a foreword by Mark Pinsky. MR MR1335234 (97f:28001a)

NP12-1: See Ch 1 of Ivan Nourdin and Giovanni Peccati, Normal approximations with Malliavin calculus, Cambridge Tracts in Mathematics, vol. 192, Cambridge University Press, Cambridge, 2012, From Stein's method to universality. MR 2962301

1. 1-DIMENSIONAL GAUSSIAN SPACE

Definition 1. If $d\gamma(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z^2} dz$ is the standard normal distribution, a 1-dimensional *Gaussian space* is a probability space $(\Omega, \mathcal{F}, \mathbf{P})$ with a random variable $Z \colon \Omega \to \mathbb{R}$, such that $\mathcal{F} = \sigma(Z), Z \sim \mathcal{N}(0, 1)$. On a Gaussian space every random variable Y is of the form Y = f(Z).

Proposition 1.

(1) Let $f : \mathbb{R} \to \mathbb{R}$ be absolutely continuous, that is

$$f(x) = f(0) + \int_0^x f'(t) \, dt$$

for some f' integrable on every real interval. Then f is continuous. Moreover, if $f' \in L^1(\gamma)$, then $(x \mapsto xf(x)) \in L^1(\gamma)$ and

$$\int zf(z) \ d\gamma(z) = \int f'(z) \ d\gamma(z)$$

Date: Moncalieri, May 8, 2015.

(2) The previous equality applies to each polynomial. In particular, for each $n \ge 0$

$$\int z^{n+2} d\gamma(z) = \int z \cdot z^{n+1} d\gamma(z) = (n+1) \int z^n d\gamma(z)$$

Definition 2. The function f belongs to S if $f \in C^{\infty}(\mathbb{R})$ and for each derivative $f^{(n)}$ there exists a monomial x^m such that $\lim_{x\to\pm\infty} x^{-m} f^{(n)} = 0$.

Proposition 2.

(1) Let $f,g \in S$. The operator $\delta \colon S$ defined by $\delta f(x) = xf(x) - f'(x)$ is called divergence operator. It takes values in S and

$$\langle df,g \rangle_{\gamma} = \langle f,\delta g \rangle_{\gamma}$$

(2) $On \mathcal{S}$,

 $d\delta-\delta d=I$

Remark 1. Consider the space $W^{1,1}(\mathbb{R})$ of functions which are absolutely continuous and such that $f, f' \in L^1(\gamma)$. Both the operator d and δ are well defined on $W^{1,1}(\mathbb{R})$ and this definition extends the definition on S. It is of interest the following property. Let $(f_n)_n$ be a sequence in $W^{1,1}(\mathbb{R})$ such that $f_n \to 0$ and $f'_n \to \eta$ in $L^1(\mathbb{R})$. If this implies $\eta = 0$ we say that the operator d is closed and, in turn, $W^{1,1}$ is a Banach space.

2. Hermite polynomials

Definition 3. The 1-dimensional Hermite polynomials H_n are defined by successive application of the divergence operator to the constant function 1:

$$H_0(x) = 1, H_{n+1} = \delta H_n(x)$$

Proposition 3.

- (1) Each Hermite polynomial H_n is a monic polynomial of degree n.
- (2) If f is a polynomial of degree less that 2n, then the unique polynomial r of degree less that n such that $f(x) = q(x)H_n(x) + r()$ is such that E(f(Z)) = E(r(Z))
- (3) The sequence of Hemite polynomials is total in L²(γ). In other words, the vector space generated by the Hermite polynomials is the ring of polynomials and it is dense in L²(γ).
- (4) The sequence $(n!)^{-\frac{1}{2}}H_n$ is an orthonormal sequence in $L^2(\gamma)$. Because of 3 it is an orthonormal basis.
- (5) If $f \in C^{\infty}(\mathbb{R})$ and $f^{(n)} \in L^{2}(\gamma)$ for all n, then

$$f = \sum_{n=0}^{\infty} \frac{1}{n!} \int f^{(n)} d\gamma(z) H_n$$

in $L^2(\gamma)$.

(6) In particular,

$$\left(x \mapsto e^{cx - \frac{c^2}{2}}\right) = \sum_{n=0}^{\infty} \left(x \mapsto \frac{c^n}{n!} H_n(x)\right)$$

(7) $dH_n = nH_{n-1}$ (8) $(d+\delta)H_n(x) = xH_n(x)$ (9) $\delta dH_n = nH_n$ (10) $H_n(x) = (-1)^n e^{x^2/2} \frac{d^n}{dx^n} e^{-x^2/2}$

Proposition 4.

- (1) Each Hermite polynomial has real roots only, that is, for each $n \ge 1$ there exist reals x_1, \ldots, x_n such that $H_n(x) = 0$ if and only if $x = x_j$ for some j
- (2) There exists weights $w_1, \ldots, w_n \in \mathbb{R}_+$ such that for each polynomial of degree less than n

$$\operatorname{E}(f(Z)) = \sum_{j=1}^{n} w_j f(x_j)$$

Proof. This topic goes under the heading *Gaussian quadrature formulæ*.

3. Derivation operator and divergence operator

Proposition 5.

- (1) S is dense in $L^2(\gamma)$, so that Df = f' and $\delta f = (x \mapsto xf(x) f'(x))$ are densely defined operators of $L^2(\gamma)$.
- (2) The operator $D : \text{Dom}(D) \subset L^2(\gamma) \to L^2(\gamma)$ is closable.
- (3) The operator δ has a closed extension when defined as the adjoint of D.

Proof.

(1) Let ϕ be the Gaussian N(0, 1) density. Then $\phi_a = y \mapsto a^{-1}\phi(a^{-1}y)$ is the N(0, a^2) density. For each $f \in L^2(\gamma)$ define

$$f_a(y) = f \star \phi_a(y) = \int f(x)\phi_a(y-x) \, dx = \int f(y-x)\phi_a(x) \, dx$$

The *n*-th derivative of $y \mapsto \phi_a(y-x)$ is

$$\frac{d^n}{dy^n}\phi_a(y-x) = a^{-(1+n)}\phi^{(n)}\left(a^{-1}(y-x)\right)$$
$$= a^{-(1+n)}H_n(a^{-1}(y-x))\phi\left(a^{-1}(y-x)\right)$$

It follows that f_a is *n*-differentiable for all *n* with

$$\frac{d^{n}}{dy^{n}}f_{a}(y) = \int f(x)\frac{d^{n}}{dy^{n}}\phi_{a}(y-x) dx$$

= $a^{-(1+n)}\int f(x)H_{n}(a^{-1}(y-x))\phi\left(a^{-1}(y-x)\right) dx$
= $a^{-n}\int f(a(z+y))H_{n}(z)\phi(z) dz$

See [NP12-1] See [NP12-1]

Definition 4.

- (1) The set of f absolutely continuous and such that $f, f', (x \mapsto xf) \in L^2(gamma)$ is denoted by $\mathbb{D}^{1,2}$.
- (2) The closure of the derivative is defined on $\mathbb{D}^{1,2}$.
- (3) $\delta \colon \mathbb{D}^{1,2} \to L^2(\gamma)$ is called the *divergence operator*. It is a closable operator.

Definition 5.

(1) For each $\boldsymbol{u} \in S_2 = set of \boldsymbol{u} = (u_1, u_2) \in \mathbb{R}^2 u_1^2 + u_2^2 = 1$, define the operators $Q_{\boldsymbol{u}} : S$ by

$$Q_{\boldsymbol{u}}f(x) = \int f(u_2 x + u_1 z) \ \varphi(z)dz = \mathcal{E}\left(f(u_2 x + u_1 Z)\right)$$

(2) For each $t \geq 0$ the Ornstein-Uhlembeck semigroup is defined on S by

$$P_t f(x) = Q_{(\sqrt{1 - e^{-2t}}, e^{-t})} f(x).$$

Here semigroup means that $P_o f = f$ and $P_{s+t} f = P_s P_t f$.

(3) The Orstein-Uhlenbeck operator \mathcal{L} is defined on \mathcal{S} by

$$\mathcal{L}f(x) = \delta df(x) = -\frac{d^2}{dx^2}f(x) + x\frac{d}{dx}f(x)$$

It follows that the Hermite polynomials are the *eigenfunctions* of \mathcal{L} :

$$\mathcal{L}H_n(x) = nH_n(x)$$

Proposition 6.

- (1) $Q_{\boldsymbol{u}}$, hence P_t extend to contraction operators on $L^2(\gamma)$.
- (2) $\langle Q_{\boldsymbol{u}}f,g\rangle_{\gamma} = \langle f,Q_{\boldsymbol{u}}g\rangle_{\gamma}$ that is both $Q_{\boldsymbol{u}}$ and P_t are autoadjoint.
- (3) $dQ_{\boldsymbol{u}}f(x) = u_2 Q_{\boldsymbol{u}}(df)(x)$ if $f \in \mathbb{D}^{1,2}$.
- (4) $Q_{\boldsymbol{u}}(\delta f)(x) = u_2 \delta Q_{\boldsymbol{u}} f(x)$
- (5) $\mathcal{L}Q_u = Q_u \mathcal{L}$
- (6) $Q_{\boldsymbol{u}}H_n = u_2^n H_n$

Proof.

(1) It is a direct check using the fact $u_1Z_1 + u_2Z_2 \sim N(0,1)$ if Z_1, Z_2 are independent and N(0, 1).

(2) Use the rotational invariance of the distribution $\gamma \otimes \gamma$.

Proposition 7.

(1)
$$P_0 f = f$$
.
(2) $P_s \circ P_t = P_{s+t}$.
(3) $\frac{d}{dt} P_t f = -\mathcal{L} P_t f$, in particular $\frac{d}{dt} P_t f \Big|_{t=0} = -\mathcal{L} f$.

5. Applications

Proposition 8 (Poincaré inequality). If $Z \sim N(0,1)$ and $f \in \mathbb{D}^{1,2}$, then

$$\operatorname{Var}\left(f(Z)\right) \le \operatorname{E}\left(f'(Z)^2\right)$$

Proof. See [NP12-1] p. 12.

$$\begin{aligned} \operatorname{Var}\left(f(Z)\right) &= \operatorname{E}\left(f(Z)(f(Z) - \operatorname{E}\left(f(Z)\right))\right) \\ &= \operatorname{E}\left(f(Z)(P_0f(Z) - P_{\infty}f(Z))\right) \\ &= -\int_0^{\infty} \operatorname{E}\left(f(Z)\frac{d}{dt}P_tf(Z)\right) \ dt \\ &= \int_0^{\infty} \operatorname{E}\left(f(Z)\delta DP_tf(Z)\right) \ dt \\ &= \int_0^{\infty} \operatorname{E}\left(df(Z)DP_tf(Z)\right) \ dt \\ &= \int_0^{\infty} \operatorname{e}^{-t} \operatorname{E}\left(df(Z)P_tdf(Z)\right) \ dt \\ &\leq \int_0^{\infty} \operatorname{e}^{-t} \operatorname{E}\left(df(Z)^2\right) \sqrt{\operatorname{E}\left(P_tdf(Z)^2\right)} \ dt \\ &\leq \int_0^{\infty} \operatorname{e}^{-t} \operatorname{E}\left(df(Z)^2\right) \ dt = \operatorname{E}\left(df(Z)^2\right) \end{aligned}$$

Proposition 9 (Variance expansion). If $Z \sim N(0, 1)$ and $f \in S$, then

$$\operatorname{Var}\left(f(Z)\right) = \sum_{n=0}^{\infty} \frac{1}{n!} \operatorname{E}\left(f^{(n)}(Z)\right)^{2}.$$

If, moreover $\operatorname{E}\left(f^{(n)}(Z)^{2}\right)/n! \to 0$, then

$$\operatorname{Var}(f(Z)) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n!} \operatorname{E}\left(f^{(n)}(Z)^{2}\right).$$

Proof. See [NP12-1] pp. 15-16 The Fourier expansion of f is

$$f(Z) - E(f(Z)) = \sum_{n=1}^{\infty} \frac{1}{n!} E(f^{(n)}(Z)) H_n(Z)$$

and

$$\operatorname{E}\left((f(Z) - \operatorname{E}\left(f(Z)\right))^{2}\right) = \sum_{n=1}^{\infty} \left(\frac{1}{\sqrt{n!}} \operatorname{E}\left(f^{(n)}(Z)\right)\right)^{2}$$

which proves the first part. For the second part, define

$$g(t) = \mathbb{E}\left(Q_{(\sqrt{1-t},\sqrt{t})}f(Z)^2\right), \quad 0 \le t \le 1$$

and note that $\operatorname{Var}(f(Z)) = g(1) - g(0)$. Then compute the Taylor expansion.

Home work

Read all texts below, then chose and solve 2 exercises. The paper is due on Fri May 15.

Exercise 1. Prove Proposition 1 and show that it applies to $f \in S$

Exercise 2. Prove Proposition 2

Exercise 3. Prove Proposition 3

Exercise 4. Provide a numerical application of Proposition 4

Exercise 5. Prove Proposition 6 items (3-6).

Exercise 6. Prove proposition 7.

Exercise 7. Prove Proposition 9.

As a second option, you can chose among the exercises listed in Sec. 1.7 of the book [NP12-1].

COLLEGIO CARLO ALBERTO E-mail address: giovanni.pistone@carloalberto.org