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1. 1-dimensional Gaussian space

Definition 1. If dγ(z) = 1√
2π

e−
1
2
z2 dz is the standard normal distribution, a 1-dimensional

Gaussian space is a probability space (Ω,F ,P) with a random variable Z : Ω→ R, such
that F = σ(Z), Z ∼ N(0, 1). On a Gaussian space every random variable Y is of the
form Y = f(Z).

Proposition 1.

(1) Let f : R→ R be absolutely continuous, that is

f(x) = f(0) +

∫ x

0

f ′(t) dt

for some f ′ integrable on every real interval. Then f is continuous. Moreover, if
f ′ ∈ L1(γ), then (x 7→ xf(x)) ∈ L1(γ) and∫

zf(z) dγ(z) =

∫
f ′(z) dγ(z)
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(2) The previous equality applies to each polynomial. In particular, for each n ≥ 0∫
zn+2 dγ(z) =

∫
z · zn+1 dγ(z) = (n+ 1)

∫
zn dγ(z)

Definition 2. The function f belongs to S if f ∈ C∞(R) and for each derivative f (n)

there exists a monomial xm such that limx→±∞ x
−mf (n) = 0.

Proposition 2.

(1) Let f, g ∈ S. The operator δ : S defined by δf(x) = xf(x) − f ′(x) is called
divergence operator. It takes values in S and

〈df, g〉γ = 〈f, δg〉γ
(2) On S,

dδ − δd = I

Remark 1. Consider the space W 1,1(R) of functions which are absolutely continuous and
such that f, f ′ ∈ L1(γ). Both the operator d and δ are well defined on W 1,1(R) and this
definition extends the definition on S. It is of interest the following property. Let (fn)n
be a sequence in W 1,1(R) such that fn → 0 and f ′n → η in L1(R). If this implies η = 0
we say that the operator d is closed and, in turn, W 1,1 is a Banach space.

2. Hermite polynomials

Definition 3. The 1-dimensional Hermite polynomials Hn are defined by successive
application of the divergence operator to the constant function 1:

H0(x) = 1, Hn+1 = δHn(x)

Proposition 3.

(1) Each Hermite polynomial Hn is a monic polynomial of degree n.
(2) If f is a polynomial of degree less that 2n, then the unique polynomial r of degree

less that n such that f(x) = q(x)Hn(x) + r() is such that E (f(Z)) = E (r(Z))
(3) The sequence of Hemite polynomials is total in L2(γ). In other words, the vector

space generated by the Hermite polynomials is the ring of polynomials and it is
dense in L2(γ).

(4) The sequence (n!)−
1
2Hn is an orthonormal sequence in L2(γ). Because of 3 it is

an orthonormal basis.
(5) If f ∈ C∞(R) and f (n) ∈ L2(γ) for all n, then

f =
∞∑
n=0

1

n!

∫
f (n) dγ(z)Hn

in L2(γ).
(6) In particular, (

x 7→ ecx−
c2

2

)
=
∞∑
n=0

(
x 7→ cn

n!
Hn(x)

)
(7) dHn = nHn−1
(8) (d+ δ)Hn(x) = xHn(x)
(9) δdHn = nHn

(10) Hn(x) = (−1)nex
2/2 dn

dxn
e−x

2/2
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Proposition 4.

(1) Each Hermite polynomial has real roots only, that is, for each n ≥ 1 there exist
reals x1, . . . , xn such that Hn(x) = 0 if and only if x = xj for some j

(2) There exists weights w1, . . . , wn ∈ R+ such that for each polynomial of degree less
than n

E (f(Z)) =
n∑
j=1

wjf(xj)

Proof. This topic goes under the heading Gaussian quadrature formulæ. �

3. Derivation operator and divergence operator

Proposition 5.

(1) S is dense in L2(γ), so that Df = f ′ and δf = (x 7→ xf(x)− f ′(x)) are densely
defined operators of L2(γ).

(2) The operator D : Dom (D) ⊂ L2(γ)→ L2(γ) is closable.
(3) The operator δ has a closed extension when defined as the adjoint of D.

Proof.

(1) Let φ be the Gaussian N(0, 1) density. Then φa = y 7→ a−1φ(a−1y) is the N(0, a2)
density. For each f ∈ L2(γ) define

fa(y) = f ? φa(y) =

∫
f(x)φa(y − x) dx =

∫
f(y − x)φa(x) dx

The n-th derivative of y 7→ φa(y − x) is

dn

dyn
φa(y − x) = a−(1+n)φ(n)

(
a−1(y − x)

)
= a−(1+n)Hn(a−1(y − x))φ

(
a−1(y − x)

)
It follows that fa is n-differentiable for all n with

dn

dyn
fa(y) =

∫
f(x)

dn

dyn
φa(y − x) dx

= a−(1+n)
∫
f(x)Hn(a−1(y − x))φ

(
a−1(y − x)

)
dx

= a−n
∫
f(a(z + y))Hn(z)φ(z) dz

See [NP12-1]
See [NP12-1] �

Definition 4.

(1) The set of f absolutely continuous and such that f, f ′, (x 7→ xf) ∈ L2(gamma) is
denoted by D1,2.

(2) The closure of the derivative is defined on D1,2.
(3) δ : D1,2 → L2(γ) is called the divergence operator. It is a closable operator.
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4. Ornstein-Uhlenbeck semigroup and operator

Definition 5.

(1) For each u ∈ S2 = setofu = (u1, u2) ∈ R2u21 + u22 = 1, define the operators Qu : S
by

Quf(x) =

∫
f(u2x+ u1z) ϕ(z)dz = E (f(u2x+ u1Z)

(2) For each t ≥ 0 the Ornstein-Uhlembeck semigroup is defined on S by

Ptf(x) = Q(
√
1−e−2t,e−t)f(x).

Here semigroup means that Pof = f and Ps+tf = PsPtf .
(3) The Orstein-Uhlenbeck operator L is defined on S by

Lf(x) = δdf(x) = − d2

dx2
f(x) + x

d

dx
f(x)

It follows that the Hermite polynomials are the eigenfunctions of L:

LHn(x) = nHn(x)

Proposition 6.

(1) Qu, hence Pt extend to contraction operators on L2(γ).
(2) 〈Quf, g〉γ = 〈f,Qug〉γ that is both Qu and Pt are autoadjoint.

(3) dQuf(x) = u2Qu(df)(x) if f ∈ D1,2.
(4) Qu(δf)(x) = u2δQuf(x)
(5) LQu = QuL
(6) QuHn = un2Hn

Proof.

(1) It is a direct check using the fact u1Z1 + u2Z2 ∼ N(0, 1) if Z1, Z2 are independent
and N(0, 1).

(2) Use the rotational invariance of the distribution γ ⊗ γ.

�

Proposition 7.

(1) P0f = f .
(2) Ps ◦ Pt = Ps+t.
(3) d

dt
Ptf = −LPtf , in particular d

dt
Ptf
∣∣
t=0

= −Lf .

5. Applications

Proposition 8 (Poincaré inequality). If Z ∼ N(0, 1) and f ∈ D1,2, then

Var (f(Z)) ≤ E
(
f ′(Z)2

)
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Proof. See [NP12-1] p. 12.

Var (f(Z)) = E (f(Z)(f(Z)− E (f(Z))))

= E (f(Z)(P0f(Z)− P∞f(Z)))

= −
∫ ∞
0

E

(
f(Z)

d

dt
Ptf(Z)

)
dt

=

∫ ∞
0

E (f(Z)δDPtf(Z)) dt

=

∫ ∞
0

E (df(Z)DPtf(Z)) dt

=

∫ ∞
0

e−t E (df(Z)Ptdf(Z)) dt

≤
∫ ∞
0

e−t
√

E (df(Z)2)
√

E (Ptdf(Z)2) dt

≤
∫ ∞
0

e−t E
(
df(Z)2

)
dt = E

(
df(Z)2

)
�

Proposition 9 (Variance expansion). If Z ∼ N(0, 1) and f ∈ S, then

Var (f(Z)) =
∞∑
n=0

1

n!
E
(
f (n)(Z)

)2
.

If, moreover E
(
f (n)(Z)2

)
/n!→ 0, then

Var (f(Z)) =
∞∑
n=1

(−1)n+1

n!
E
(
f (n)(Z)2

)
.

Proof. See [NP12-1] pp. 15-16 The Fourier expansion of f is

f(Z)− E (f(Z)) =
∞∑
n=1

1

n!
E
(
f (n)(Z)

)
Hn(Z)

and

E
(
(f(Z)− E (f(Z)))2

)
=
∞∑
n=1

(
1√
n!

E
(
f (n)(Z)

))2

which proves the first part. For the second part, define

g(t) = E
(
Q(
√
1−t,
√
t)f(Z)2

)
, 0 ≤ t ≤ 1

and note that Var (f(Z)) = g(1)− g(0). Then compute the Taylor expansion. �
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Home work

Read all texts below, then chose and solve 2 exercises. The paper is due on Fri May
15.

Exercise 1. Prove Proposition 1 and show that it applies to f ∈ S

Exercise 2. Prove Proposition 2

Exercise 3. Prove Proposition 3

Exercise 4. Provide a numerical application of Proposition 4

Exercise 5. Prove Proposition 6 items (3-6).

Exercise 6. Prove proposition 7.

Exercise 7. Prove Proposition 9.

As a second option, you can chose among the exercises listed in Sec. 1.7 of the book
[NP12-1].
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