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Traditionally, a first course in probability presents a well established set of topics in
probability on finite sets and probability on real numbers. Popular examples are [8,
Ch. 1-3] and [4, Ch 3]. The present course takes on the same set of topics but the
mathematical treatment is more sophisticated than usual. This is required in a number
of contemporary applications.

1. ELEMENTARY PROBABILITY FROM AN ADVANCED VIEWPOINT

1.1. Probability. Given a finite set €2, a probability function is a mapping p: 2 — R,
such that Y op(w) = 1. In such a set-up, a random wvariable is a generic function
f:Q — S, where S is any set.! An event is any subset A = ). The set of all events A
is a field i.e., contains ¥ and 2, and is closed under complement, union, intersection. A

Date: DRAFT March 4, 2019.
1A more sophisticated set-up i.e., measure theory, is needed when the sample space is not finite
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proposition is a mapping a: Q — {FALSE, TRUE}. The set of all propositions and the
field of events are in 1-to-1 correspondence w € A < a(w) = TRUE and set operation
translate into logical operations, A®is —a, AuBisavb, AnBis anb. Another equivalent
presentation of events uses indicator functions A <> 1,. In this case 14,5 = 1415 and
1408 = 14+15—141p. The last presentation is frequently easier to andle when algebraic
computations are required.
The probability function p induces a probability measure P: A — [0,1] by setting
P(A) = c4p(w). The probability measure P has the following properties:
(1) P(2) =1 ;
(2) P(AuB)=P(A)+ P(B)— P(Au B)
Conversely, any function on P: A satisfying the conditions above comes from the proba-
bility function p(w) = P({w}).
Here are some notable cases.
e The constant probability function f(w) = 1/#Q induces the uniform probability
measure.
e The probability function such that p(w) = 1 if w = a induces the Dirac probability
measure 0, such that d,(A) = 1 if and only if w € A.
e Given probability functions p and ¢ and a number A € [0, 1], then (1 — X\)p + A\¢g
is a probability function, a mizture of p and q.

Ezxercise 1 (Finite state spaces). Consider an example of finite set with an interesting
structure and compute the uniform probability function. [Permutations, partitions, sub-
sets with a given number of points, graphs, trees, tables with given margins, .. .]

1.2. Random variables. Consider a random variable f: ) — S, where S is any set.? A
o-field S on S is a family of subsets of S which is a field, and moreover, is closed under
numerable intersections and numerable unions.

Given a probability P on €2 the equation

Q(B) = f4P(B)=P(f~(B), BeS,
defines a probability measure on the measurable space (S,S), that is a mapping @: S —
[0, 1] such that
(1) Q(S) =1 ;
(2) Q(uB,) =Y., Q(B,) for each numerable family of disjoint sets {Q,} .
fx P is the image of P under f or the distribution of f under P. Another notation is Pj.
If S is actually finite and S is the set of parts of S, then the image probability function

is defined by py(s) = ZwU(w):s p(w).

1.3. Real random variables. Consider now the case of a random variable u: 2 — R.
The set of real random variables is denoted by L(2). It is a real vector space, an algebra
with unity, and it is closed under A = max and v = min. It is also denoted by R®. If
Q={1,...,N}, then L(Q) can be identified with the set of all column vectors in RV,

The expected value of u € L(§2) under the probability function pis E, [ f] = >, u(w)p(w).
Notice that u = 14 gives the special case E,[14] = P,(A), where P, is the probability
measure induced by p. If both p and u are represented as vectors p,u € RV*! then
E,[u] = p'u.

Here are some properties of the expectation operator.

(1) E,: L(2) = R is a linear operator: E, [au + fv] = aE, [u] + SE, [v].

2A fully finite treatment is not possible because we want real valuer random variables
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(2) E, is positive and faithful: If uw = 0, then E, [u] = 0. In the case E, [u] = 0, then
u =0 on Supp (p) = {w € Q|p(w) > 0}.
(3) Change of variable: Let f: Q — S with S finite. Then E, [uo f] = E,, [u].

Exercise 2. Show that for all non-negative random variable u, all ¢ > 0, and all @ > 1,
one has P(u > ¢) < & E (u®).[Use indicator functions and positivity]

Exercise 3. Let Q = {0,1}", w = x1...3,. Define f(w) = 377, x;. For each 0 € [0,1]
show that p(w) = /@ (1 — #)"~) is a probability function on Q. Compute p;, m =
E, [f], Ep [(f —m)?].

1.4. Simulation. Let be given an infinite sequence wy, ws, ... and assume that the limits
p(w) = limy, o £ > (wp = w) exist for all w € w. Then p(w) = 0 and Y, p(w) = 1.
We say that the probability function p is the distribution of the sequence. Conversely,
the sequence is a simulation of p. Fvery probability function admits a simulation. In fact,
for Q@ = {1,..., N}, consider a partition of the of ]0, 1| into intervals I, ..., I, such that
the length of each Iy is pg. There exists a sequence z1, xq,... of real numbers in |0, 1[
such that sequence defined by w, = k if x,, € I; is a simulation of p.?

A simulation allows to compute expected values as E, [u] = limy, o £ D37 u(wy). In
particular this applies to probability measures and we can talk about the simulation of
a probability measures. If (w,), is a simulation of P, then (f(wn))n is a simulation of
fx#P. The full structure of probability on finite sample space could be presented as a
topic in simulation.

1.5. Aside: convex sets. *

A subset H of a vector space V' is an affine space if {x —y|z,y € H} is a sub-vector
space of V' which is called the vector subspace parallel to H. The dimension of the affine
space H is the dimension its parallel vector subspace. Given xg,...,z, € V the set of
all vectors of the form zq + Z?Zl Az, Aj € R, is the affine space generated by the given
vectors. An affine space of dimension n — 1 in R” is an hyper-plane,

A subset C' of the vector space V is convex if for all z,y € C' all of the segment
(1 — XNz + Ay, A € [0,1] belongs to C. The intersection of two convex sets is convex.
Given zg, ..., x, € V the set of all A\gxg + - + A\, with \g +---+ A\, = 1 is the convex
set generated by the given vectors. Such a set is called a polytope (or convex polytope).
Notice that 3;7_ \jay = (1 =207, Aj)mo + 207, Ajwj = @0+ 2571 Aj(x; — 20) that is, the
polytope is a part of the affine space generated. A notable example of convex set is the
half-space of v € V such that {c,v) < b with c € V and b € R. A finite intersection of
half-spaces is a convex set called a polyhedron. A bounded polyhedron is a polytope.

The vectors xg, ..., x,, are affinely independent if the vectors x; — xg, ..., T, — xg are
linearly independent. They form a vector basis of the sub-space parallel to the generated
polytope which in this case is called a simplex. Two simplexes of the same dimension
can be mapped one onto the other by an affine transformation that map their respective
generators (the vertexes).

3The proof of the existence of such a sequence is not given here. It follows for example from the Strong
Law of Large Numbers, to be discussed later. Other proofs are bases on arguments from Ergodic Theory
or Fourier Analysis. For example, irrational rotations of the torus in C have such a property. This
example originally suggested to von Neumann the algorithms for the computer generation of random
numbers. For a simple presentation of this topic, check S.H. Ross Simulation on Google Books.

4Convex analysis is an important topic in applied probability. Standard references are the monographs
7,1
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1.6. Affine geometry of the probability simplex. Let A be a probability function
on Q. As A € R?, we can write A = >, _, A\(¥)d,, so that the set A(2) is the convex set
generated by the probability functions associated to the Dirac probability measures. Let
us code Q as {1,..., N} and write A = Z;L=1 Ajej. The vectors e; — e, j=1,...,N —1
are linearly independent so that A(£2) is a special simplex which is called the proba-
bility simplex. The parallel vector space is the vector space of the vectors of the form
2.1 aj(ej — e1) that is of the form 3,7, aje; with 377 a; = 0. These are the vectors
which are orthogonal to the constant vectors.

The set of probability functions with support €2; < Q form a simplex of dimension
#Qp — 1. If #Q; = n — 1 this sub-simplex is a face of A((Q).

There is another simplex that represents the probability simplex A(£2) namely, the solid
probability simplex. In fact, we can represent a probability function by its n — 1 values
Aj, ...y An—1 which form a vector in R"~* satisfying the conditions A; > 0 and Z;:ll A < L
The vectors eq,...,e,—1,0 € R"! are affinely independent and generate a simplex of
dimension n — 1 as 27};1 Aje; + A,0. The mapping between the two representations is
given by R"s¢; —»e; e R forj=1,....,.n—land R" 3¢, — 0 R"" %,

Ezercise 4. Study the probability simplex A({1,2,3}). In particular, construct the solid
simplex and show it is a polyhedron. Consider the representation as an equilateral trian-
gle. [Check for example http://henr.in/crumbs/simplex/ .

FEzercise 5. Study the probability simplex on Q = {0, 1}2. It is a simplex of dimension 3
and it is interesting to consider its graphical representations. [Check the Wikipedia entry
https://en.wikipedia.org/wiki/Simplex.]

1.7. Aside: differentials. Let f: O — R", where O is an open sub-set of R™. The
function is differentiable at z € O if there exists a linear mapping df (z) € L(R™, R™) such
that

f(@+h) = f(z) = df(2)[h] = o(h) .
The matrix representing the linear operator df(z) is called the Jacobian matrix of f,
J f(z), whose elements are the partial derivatives

Jf(z) = [%fl([ﬂl, . ,xn)]

The derivative of the composite function f o g at z is df o g(x) = df (g(x)) o dg(x).

i=1,...,n;5=1,...m

1.8. Differentiability on the probability simplex. Let I 5 6 — A(f) be a curve in
the probability simplex which is differentiable in R®. The derivative

X(0) = lim k™' (A(0 + h) = A(0)

belongs to the subspace parallel to the simplex. If A(w;#) = 0, then the real differentiable
function 6 — (@, #) has a minimum at 6 = 6, so that X' (w,6) = 0 and \'(#) belong to
the space parallel to the face of the simplex characterised by A(w) = 0.

Ezercise 6. The function H(X) = — >, A(w)log A(w) is defined on the convex set A°(£2)

of strictly positive probability functions. As the function x — ¢(x) = —z log x is concave,
so that
1 1 1 1
—H\) = — AMw)) < — E = —
7071V~ gg 2,00 <0 (#Q Q> ’ (#Q)

and the uniform probability function is a maximum of the entropy. Let us show that

this maximum is unique. Assume there is a A which is a maximum for the entropy and
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let 6 — \(6) be a differentiable curve in A%(€2) such that A(0) = \. Let us compute the
derivative

—5H(A0))

= = > (log Mw; 0) + DX (w; )] == > (log A(w) + 1)N(w;0) = 0.

A=0 weN 9=0 weN

As X is in the A%(Q), for each v in the space parallel to the simplex we can consider
the curve 6 — X\ + v whose derivative atv § = 0 is v. It follows that for each v we have

> (log A(w) + Lv(w) = 0

weN

hence, log A is constant that is, A is constant A\(w) = 1/#Q.

1.9. Aside: convex functions. If a convex set A € R™ is open, then every straight line
intersects C' in an open interval or an empty interval. For example, the subset of the solid
probability simplex consisting of strictly positive probability functions is an open convex
set. The closure A of an open convex set A is a convex set. The difference A\A is the
boundary of the convex set. Let x be a point of the boundary. A unit vector u applied
at = enters A if there is a y € A such that uw = (y — x)/ ||y — z|. The set of all entering
vectors cannot contain two antipodal elements so that there is a unit vector w such that
{(w,uy < 0 for all entering unit vector. This argument leads to the proof of the following
Isolation Theorem: Let A be an open convex set in R™ and let x be in the border of A.
There exists a unit vector w such that {w,y — xy < 0 for all y € A that is, the half-space
contains the convex set.’

A function ¢ defined on R with values in R = R U {+00} is convex if the epigraph
epi(¢) = {(z,t)|z € dom (¢),t € R, ¢(z) <t} is a convex subset of R"". We define
dom (¢) to be the set where ¢ takes finite values. If ¢ is convex, then dom (¢) is a
convez subset of R™. If 1,29 € dom (¢), then there exist (z1,t1), (x2,t2) € epi(¢) and
for all A € [0,1] it holds ((1 — Nz + Aza, (1 — Aty + M) € epi(¢). In particular,
d((1=N)x1 4+ A\xe) < +00. If ¢ is conver, then (1 —N)d(x1) + Ap(22) < d((1—N)xg + Axo)
for all 1,29 € R™ and A € [0,1]. If any of 1, x5 in nor in dom (¢) the inequality
is trivially satisfied. Otherwise, it is the same computation as above. Conversely, if
¢: dom (¢) » Rand (1 —N)p(z1) + Aod(z2) < ¢((1 — N)xy + Axg) for all 21, 29 € dom (9)
and X € [0, 1], then the function extended with value +oo outside the domain is convex.

Let ¢ be convex, and define the strict epigraph be open convex set

{(z,t)|x € dom (¢),t € R, o(z) < t} .

Assume that at a point (z,¢(z)) the entering unit vectors are not all horizontal. Then
the Isolation Theorem implies that there exist at least a supporting hyper-plane. In such a
case, ¢ on all such points ¢ is the point-wise mazimum of the supporting affine functions.
In the differentiable case, the tangent plane is the unique supporting hyperplane. If
¢ € C?(0O) then the Hessian matrix is non-negative definite.

Let ¢ be conver and let ¢ be differentiable on an open O. Then Vo: O — R" is
monotone i.e., (Vo(z) — Vo(y),x —yy = 0 for z,y € O. We can re-write the basic
inequality as

AT oz + My — ) — d(2)) < ¢ly) — d() -
If A\ —0.
Vo(a),y —x) < o(y) — o(z) -

By adding the inequality with x and y exchanged we obtain the monotonicity.

PSee a full proof in [1, p 45-46].



Conversely, if ¢ is differentiable and monotone on an open set O, then ¢ is convexr on
O. Write z = (1 — Az + Ay and assume 0 < A\ < 1 because otherwise there is nothing to
prove. observe that

o(2) — o) = j (Vo 4tz — 1)),z — z) dt =

L (Vo(x +t(z —x)) = Vo(z),z —x) dt +{(Vp(z),z —x) <
(Vé(2),z —x) = AVd(2),y —x) .

In fact, z —x and (x +t(z — 2)) — z are proportional with factor —(1—¢) < 0. In a similar
way,

o(y) — 6(2) = f (Volz+ty — 2)).y — 2) dt =

fo (Vo= 4ty — 2)) — Vole)y — =) di +(Vo(z)y—2) >
(Vo) — 2 = (1 — N{V(2),y — ) |

as y — z and (z + t(y — 2)) — z are proportional with a factor ¢ = 0. We rearrange the
two inequalities as

O((1 =Nz + Ay) < ¢(x) + A(V(2),y — )
A((1 =Nz +Ay) < ¢(y) + (1 = AN <(Vo(2),y — )

and take the convex combination to conclude the proof.°

Ezercise 7 (Examples of convex functions). Show that the following functions are convex
and compute the gradient mapping if it exists.

(1) R" sz =30, " = [z, a = 1.

(2) R" 3z — exp ({a,z)), a € R".

(3) R" 3z +— —log ({a,)), a € R™.

(4) Ry sz +— zxlog.

1.10. Inegalities for the expectation. If uy,...,u, are real random variables, and
denotes the corresponding random variable with values in R™, then for each probability
function p the vector E, [u] = >} .o p(w)u(w) is well defined. The operator E,, is linear
and affine, namely for vector random variables u, v, reals «, 3, and constant b, it holds

E,[au+ fv+c] = aE, [u] + BE, [v] +b.

The basic convexity inequality is Jensen Inequality. Let p be a probability function and
let u be a vector random wvariable. If ¢ is a convex function on C' and C contains the
image of u, then E,[¢pou] < ¢ (E,[u]). Here are two proofs, both interesting. First,
observe that the convexity inequality can be easily generalised to any number of terms,

925( )‘sz) <o), N0, N=1,
=1 j=1 j=1

which is exactly the Jensen inequality written differently. Proof by recurrence. Second,
let  — a'x + b be an affine function which is bounded by ¢. Then o¢'E,[u] + b =

6This proof is taken from [7, p. 26]



E,[a'u+b] < E,[¢powu]. Now take the supporting affine function at E,[u] that is,
choose a and b such that ' E, [u] + b = ¢ (E, [u]).

The most common example of application is with ¢(z) = 370, |7;* = [z, a = 1. It
follows that

Ep [Z \uj’a] > Y By [lu]*
J=1 Jj=1
Another inequality of interest is the Holder Inequality: For all probability function p,
all couple of random variables X and Y, and all couple of positive numbers a and b such
that 1/a + 1/b =1, it holds

— 1/b
E, [XY] < E, [|X]']""E, | v[’|

Ezercise 8 (A proof of the Holder inequality). Here is a proof involving computations of
independent interest. From the convexity of x — €%, that is

1 1 ]_ 1
u 1/(1 v l/b — EUJFZ’U < QU - av
(e*)7* (e”) e et + e,
we obtain 1 ]
E, | ()" ()] < ZE,[e"] + By [e'] -

Let U, V be strictly positive random variables and define u and v by e* = U*/E, [U?]
and e’ = V*/E, [V*], respectively. Notice that now E, [e*] = E, [e"] = 1. The inequality
above becomes

a a a l/b 1 U 1 U
E, |0/ B, [0 (V/E, [V'])""| < B, [e] + 3By [e'] = 1.
A little algebra produces the Hélder inequality for strictly positive random variable. Now
consider U +¢€, V + € and the limit € — 0 to prove the inequality for non-negative random
variables. Finally, take U = |X| and V' = |Y| and observe that XY < |X||Y] to conclude

the proof.”

Another classical inequality is the Minkovski Inequality: For all probability function p,
all couple of random variables X and Y, and a > 1, it holds

E, [[X + Y] < B, [[X[T] + B, [[Y]"] -

Minkovski inequality shows that L(Q2) 5 X — E, [|X|a]1/a = | X1, s @ norm if p is
strictly positive. If p is not strictly positive, then it is a semi-norm.®

Ezercise 9 (Proof of Minkovski inequality). The case a = 1 has an immediate proof. If
a>1luse (X +Y)=X(X+Y) !+ V(X +Y)! and Holder inequality. Notice that
1/a+1/b=1if and only if b = a/(a — 1).

Exercise 10 (L*-convergence and Weak LLN). Consider the Bernoulli n-scheme and define

Sp=X1+--+X,. Then Ey[S,/n] = 0 and Ey4 [(i—” —9)2] =19(1-6) > 0asn — .
Ezercise 11 (Cramer inequality and Strong LLN). Let p be a probability function, X a
real random variable, ¢ > 0. For all ¢ > 0,

Py(X =¢) = P,(tX = ct)P,(e"* = &) < éEP [etX] = exp (— (ct —logE, [etx])) .

"This proof is taken from [3, §3.2.16]
8t is interesting to compare this statement with the corresponding statement as seen in Measure
Theory
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The function : t — log E, [¢"¥] is convex with
E, | XeX
K'(t) = —p[ ~ |
E, [e"X]

and

o B [X2NE, [¢¥] — B, [XeX]"  E, [(X - E, [X])%]
K'(t) = B, [0 = B, [o"] >0.

To get the optimal inequality we look for

sup ct — k(t) = sup ct — k(t) .
t=0 teR

If £ is the solution of ¢f = #/(£), then

Py(X > ¢) < e (clorEo [ ])

p

In particular, if X is binomial, then

E,[¢] = kzoetk (Z) OF (1 — )" % = (e' + (1 —0))"

so that

k(t) =nlog (Be' + (1 —0)) , K(t) = n% :

The optimum value for the inequality is explicitly computable.’.

2. EXPONENTIAL EXPRESSION OF THE OPEN SIMPLEX A°((2)

Every positive probability function is of the form p(w) = eV . This simple remark is
frequently used in many applications as it provides a way to avoid inequality contrains.
We start with some examples.

FEzercise 12 (The Bernoulli model as an exponential family). The Bernoulli model
plw; 0) = 97 (1 — )"
with 0 €]0,1[, (X1(w), ..., Xu(w)) = w e Q = {0,1}", X;(w) = ;, T(w) = X7, Xj(w),

can be written as
p(w; 0) = exp (log (%) T(w) + nlog (1 — 9)) 0€l0,1] .

For each w the function 6 — p(w;0) is called likelihood of w.

The parameter 0 €]0, 1] is the value of a probability or expected value, 8 = P,(X; =
1) = E, [X;]. The new parameter o = §/(1 —6), 8 = o/(1 + 0), represents the odds, and
0 €]0,4+o[. WE use the parameter log-odds, o = log (1%;), 6 = e*/(1 + ), a € R so

that we can write the Bernoulli model in the form

p(w;a) =exp (aT(w) — k() , kK(a) =nlog (1l +e%) .

9The relation with the Strong LLN appears when evaluating the dependence on n. To be discussed
later
8



The function k is strictly convex with

K (o) = ng i e nd = Epe) [T ;

W) = nﬁ — nB(1 = 0) = By [(T = n))?]
" ea(l - ea) . 2 2

K" (o) = (FE =0(1—-0)"—06°(1-90).

The log-likelihood at w is
l:a—logp(w;a) = al(w) — k(a) .

It is strictly concave with

%K(w; a) = T(w) — &' (a) = T(w) — ng i - T(w) — Eye) [T] ,
in particular, ¢'(w;0+) = T(w) and ¢(+0) = —oo. The maximum obtains at 6(w) such

that T'(w) = 0(w) that is, O(w) = T(w)/n.
The random variable 0 is the mazimum likelihood estimator of the parameter #. This

estimator is unbiased because ) [é} = @ and it is weakly consistent because

Pro) (‘é — 0‘ > e) < e ?Epy) [(é - 0)2] = e—QW —0 if n—oo.

The behaviour of the standardized error i.e., the CLT will be discussed later.

The exercise above provides the simplest example of classical Statistics and the simplest
example of the expression of a parametrized probability function as an exponential famaly.
The next exercise shows the use of weight functions.

Exercise 13. Consider the binomial probability function

n

p(k;@)z(k)Qk(l—H)mk, ke{0,1,....,n} , 6€]0,1].

Here, the binomial factor does not depend on the parameter. It is convenient to consider
the function k — (Z) as a weight function on the sample space and write the exponential
expression as

p(0) = exp (log (1%9) K +nlog (1 — 9)) (;) .
N —

Now, the interesting factor is the density with respect to the binomial weight, e ,
a being the log-odds.

A similar model has been considered in Statistical Physics a long time before its use
in Statistics. In the next example, we use an un-normalised probability function e.i., a
function f: 2 — R,. Given such a function, one computes the normalizing constant
Z = Yecoflw) and p = f/Z is a probability function. The set of all un-normalized
probability function is a pointed cone and the normalization is a mapping from the cone
to the probability simplex.

FEzercise 14 (Gibbs distribution). If €2 is a finite set of states of a physical system, and
w — U(w) is a non-negative function whose value is the energy of the state w, the
probability function

U(w)

plews ) f(w) = eng(_T) ey



provides a probability on the set of states Q2 which is called Gibbs distribution. C.f. [5,
§28]. The parameter t represents the absolute temperature.
The normalising constant is

U(w)
Z(t) = -
(t) = > exp < . ) :
so that the Gibbs probability function is

exp (-2

(w)
plw;t) = ST <_M> = exp (—UT — log Z(t)) .

t

One has
Uw) ) Uw)
d 2ieq OXP <—T) =1 1
—log Z(t) = = = )= —F
dt og (t> Z(t) 12 ;2 U(w>p(w? t) 12 p(t) [U]
and
d 1 1
Elogp(w;f) = t—QU(W) - t_ng(t) [U] .

Other equations similar to those we have obtained for the Bernoulli distribution hold.
This provides the basic formalism for this physical model. For example, the deviation of
the energy from its mean value is

d
U—-E,u|U] = tZ% log p(t) .
2.1. Positive probability functions. In general, if the probability function p : € is
positive, it is always possible to write it as p(u) = exp (U(w) — k(U)), where U is a
random variable and ¢ (U) is constant depending on U. In fact, if log p(w) = U(w)—k(U),
then U is identified up to a constant and, for any given U,

1= Z p(w) = o r(U) 2 V@ 50 that, k(U) = log <2 eU(w)) )

wef) wef) we

FEzercise 15. Condider the binomial probability function p(k) = (Z)Hk(l — O k=
0,...,n, 8 €]0,1], we can write

p(k) = (Z) (1—6)" (%e)k — exp (log (Z) + klog (%) +nlog(1— 9))

that is, U(k) = log (}) + klog (1%;) and x(U) = —nlog (1 — 6).

It is convenient to change the parameter: if a = log (%), then 0 = 15}2& and

p(k) = exp <ak + log (Z) ~nlog(1+ ea)) .

In fact, U(k) = ak + log (}}), hence

k(U) = log <Zn: eU(k)> = log (i (Z) Ozk> =nlog(1+e%) .

k=0
10



Such a way to express probability functions and the related formalism was initiated in
Statistical Physics by J.W. Gibbs (1901).

The mapping U — p = eV~#) cannot be injective because the vector space of random
variables has dimension #£2 while the convex set of probability functions has dimension
#8 — 1. Precisely,

QU@ =r(U) _ JVW@)-r(V) Uw)—V(w) =r(V)—k(U) .

The function eV is a generic positive function and the set of positive functions is a cone.

A base of this cone is the open probability simplex and the normalization is a projection
onto this basis.
There are many ways to add a one-dimensional constraint to obtain a 1-to-1 function.

2.2. Potentials in the space parallel to the simplex. For each positive probabil-
ity function there is a unique potential U such that Y, oU(w) = 0. Assume p =

we)
exp (U — k(U)) with Y} ., U(w) = 0. Then
D logp(w) = > U(w) = Ni(U), N=4#Q,
we) we)

that is, k(U) = % D weq log p(w). Conversely, given any positive probability function, we
can define U = logp — + > cq log p(w) so that, Y, U(w) = 0. Moreover,

p = exp (logp) = exp (U + = Z log p( )) =exp (U — k(U))
wEQ
with k(U) = —% X cqlog p(w). In conclusion: Let By denote the vector space parallel to
the simplex. The mapping By 3 U — eV V) with xk(U) = —% e /@ s 1-to-1. The
wverse of this mapping is

] 1
A(w) 3 p—logp — logp(w) -

A similar, but more general and more useful computation, considers the case of an
exponential density with respect to a weight function.

2.3. Potential centered at the probability function. Consider now the mapping
A°(Q)ap—V =logp—E,[logp] .

Notice that
» [logp] = — > p(w) log p(w) = H(p)

wef)
V+H(p)

is the entropy of p, that is in this case p = e
2.4. Non-negative potential. Consider the set U of all non-negative real functions
U : Q such that minU = 0. Notice the peculiar shape of such a sub-set on R%: it is a,
pointed non-convex cone that is, if U € U then pU € Y for all p > 0 and moreover it is
contained in the half-space associate to By.

The expression is unique, because of all the U’s such that p = e
to U.

In this expression, if Qy = {w e QU (w) = 0} and Q; = {w € Q|U(w) > 0}, then

= log Z V@) = log (#Qo + Z eU(“)>

we) wey

U=xU) only one belongs

11



and

1
if we QO
#0 + elVw) ’
p(w) = V@) — 0 ?ja(uf)m
ifweQ,,

#QO + ZWEQ+ eU(w)
The previous expression allows to compute limit cases e.g., lim,_,, eV =F0),

Ezercise 16 (Limit cases of the Gibbs distribution). If the energy in the Gibbs model is
zero at some states (g, it is possible to use the expression above to compute the limit of
the probabilities as ¢ — 0 and ¢ — 0.

12



3. INDEPENDENCE AND CONDITIONING

When the sample space has a factorial structure, S = Sy x--- S, we define the marginal
projections X;: S 3 x = (z1,...,x,) — z;. If v € A(S) we say that the probability
function v provides the joint distribution of the marginal projection that is,

r—P, (Xi=21,...,X, =x,) = v(z1,...,2,) .

Given any I < {1,...,n}, the I-marginal joint distribution is
v P (X =a) = > (@) =yila) -
X (z)=21

In particular, the marginal distributions are the probability functions

v () =Py (X =2) = ), ().

| X (z)==;

In a slightly more general set-up, we have a sample space €2, a probability function
p € A(2), and n random variables Y;: 2 — S;. The image of p under ¥ = (Y;,...,Y},)
is a probability function py = A € A(S), S = S; x --- x S, and the above discussion
applies. For a generic real random variable Z: Q we have E, [Z] = ) ., Z(w)p(w). The
real random variables of the form Z = ¢(Y") are said to be Y-measurable. In such a case,
it is easy to verify the fundamental equation

E, [¢(Y)] = Epy [0] -

3.1. 2 factors. In case of two factors, let us write X, Y for the two marginal projection
and p, v =Y for the marginal distributions.
A transition function is a mapping

P:S =25 x5 53 (z,y)— P(ylx) € [0,1]

such that, for each fixed x, y — P(y|x) is a probability function. If p is a probability
function on the first factor S, then (z,y) — P(y|x)u(z) is a joint probability function.
Conversely, given any joint probability function 7 with margins p and v, there exists
transition functions P and () such that

(@, y) = Plylr)p(z) = Qzly)v(y) -
Notice that p(z) # 0 implies P(y|lz) = ~(z,y)/u(x). Otherwise, pu(x) = 0 implies
v(z,y) = 0 for each y and P(.|z) is any probability function. Assume both the mar-
ginal probability functions p and v are both positive. Then

Qaly) = T

is called Bayes formula.
As for each x the function y — P(y|z) is a probability function, we can compute
the expectation of a real random variable f: {23 — R with respect to the transition

probability as Ep(js) [f] = X,cq, f(¥)P(ylz). The mapping

is a real random variable on ) which is called conditional expectation.
More generally, we have a sample space ) with a probability function p and random
variables X: Q — 57, Y: Q — S;5. Let us consider the image pxy and the representation

pxy (v, y) = P(y\x)pfé(fﬂ) = Q(z|y)py (y) -



pxy is the joint probability function; px is the probability function of X and py is the
probability function of Y; P is the probability function of Y given X; @) is the probability
function of X given Y.

If one of the conditional probability functions is constant say, P(y|x) = P(y), then
v(x,y) = px(z)py(y) and we say that Y and Y are independent.

Let Z = ¢(X,Y) be a real random variable in L(X,Y). Then E,[Z] = E,,, [¢].
Consider the function

¢: x> Epp) [0 Z¢xy (y|x) .
yeSa
and define R
E, (0(X,Y)|X) = ¢(X)
If X and Y are independent, then the conditional expectation is constant and equal to
the expectation.
The conditional expectation computed above has the following two defining properties.
(1) E, (Z|X) is a function of X; and
(2) E, [Z2Y] =E, [E, (Z|X) Y] for allY which is a function of X

Fzercise 17. In the Bernoulli model with marginal projections Xj, compute the joint
distribution of §,, = 2?21 Xjand T, =infk =1,...,nX; = 1. Compute all the relevant
conditional quantities.

3.2. Using matrices and tables. A probability function v on S = S7 x S5 is commonly
represented as a matrix I' = [y(z,y)] € R%**%2. In this representation, the row vectors
put =T1 and v = 1'T represent the marginal probability functions as in

(1) v(1,2) ~(1,3)] |1 (1)
Il=|7(2,1) 7(2,2) v(23)| 1] = [#u®)
(3,1 v(3,2) ~(3,3)] |1 1(3)

Transition functions are commonly represented as matrices with elements P(y|z),
being the row-index. When S = 57 = 55, the transition matrix is called Markov matrix
i.e., a Markov matrix is a square matrix P with non-negative elements such that P1 = 1.
Notice that this relation provides an eigen-value and an eigen-vector of P. If the first
marginal probability function u is represented as a row vector then the row vector v = uP
is the other marginal probability function of the joint distribution.

The probability matrix I', the marginal probability vectors p and v, and the two
transition matrices P and () are related as matrices by the equations

p=1T" v=1T, T =diag(u)P = Q"diag(v)

for example,

v(1,1) ~(1,2) ~(1,3) p(1) 00 | [P(AL) P(2]1) P(3[1)

v(2,1) v(2,2) v(2,3)| = 0 w2 0 ||P(12) P(272) P(3]2)

7(3,1) (3,2) (3,3) 0 0 w@ | [PA3) P(23) P(33)
FEzercise 18 (Reversibility). A probability function v on S? = S x S is reversible (or,

symmetric) if y(z,y) = v(y,z) that is, if ' = I'". When 7 is reversible, then the two
margins are equal, y = 1'T"" = 1'T" = v. Moreover, diag uP = diag @, so that P = Q
when p > 0. If N = #5, then a generic joint probability function belongs to the (N?—1)-
simplex A(S?%). The set of reversible probability function is the subset defined by the
(g) = N(N—1)/2 symmetry constraints then has (N?—1)—N(N—-1)/2 = N(N+1)/2—1
degrees of freedom. It is a bounded polyhedron hence a polytope. It is interesting to find
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its () = N(N — 1)/2 vertexes. Map all off-diagonal positions (z,y) into the set {z,y}.
Consider a(c), c € (3), such that a(c) = 0, 3, a(c) < 1. This provides a parametrization

of the off-diagonal elements of of I'. Then split the remaining mass on the diagonal.

Ezercise 19 (Earth-mover problem). A transition function P from S; to Sy could be
seen as a rule to move a fraction P(y|x) = P,, of the mass at € S; into the position
y € So. In this way, a total mass p on S; is moved in a mass v = pP on S;. There
is a joint distribution y(x,y) = P(y|z)u(x) giving the mass from z that is moved to y.
The earth-mover has given initial ;1 and final v and looks for a feasible transport plan P.
The set of feasible transport plans is convex and is better represented as a convex subset
of A(S; x S3) via the joint distribution. Assume the transport from x to y has a cost
c(z,y) for the earth-mover. The total cost of the transport plan is 3,  c(z, y)P(y|z)w(z).
The constrained optimization problem has an elementary solution in some cases e.g.,
S1 =9, =295, #5 = 3, and the cost is a distance.

3.3. n factors. The case were there is a finite number of random variables does not
present any special new feature, as it is illustrated in the examples below.

15



3.4. Markov chain. Consider a finite set S and the sample space Q = S"*!, Q s w =
(g, 21, ..., xy,), with marginal projections X;(w) = =z;. The sequence I = (0,...,n) is
thought of as a sequence of times and the sequence w = (xg, 71, ..., x,) is a trajectory of
something evolving in S.

Given a probability function 7y: S and a transition function P on S, we define the
joint probability function

V(T x,) = (H P(xj|a:j_1)> 7o(z0) = 7o (o) 1_[ Py 1z -
J=1 Jj=1
Notice the probabilistic notation (middle side) and the matrix notation (right hand side).
The structure (Q = 5™, ~, (X;)7_) is a (canonical) Markov chain with initial distri-
bution my and stationary transition probability P. This is a constructive definition. An
equivalent (non-canonical) definition shows the intrinsic property of such a structure:
(P, (X;)7)) is a Markov chain with initial probability mo and stationary transition
probability P if and only if
(1) XO ~ 7.
(2) For each k =1,...,n it holds

]P)(Xk = xk:|Xk—1 = Tk—1y-- -XO = 1’0) = P(l‘k|$k_1) .

The notation X, ~ my means that the image of the base probability with X, has
probability function 7. The proof of equivalence is a simple algebraic check.
The distribution of each X}, is, using the matrix notation for transitions,

mwe) =Py (Xe =) = > >, molwo) | [ Plajor,z)) =

L0,y Lh—1 Lhot1se-sTn 7=1
k k
D, mol@o) [ [Plajvay) =Y molxo) D, | [Pwjrw)) =
T, s Tho—1 J=1 o 1,5 Tp—1 J=1

o P k (33 k)
An important special case appears when the initial probability function is invariant,
> Plylx)mo(z) = mp, or my = myP. Note that m is a left eigen-value of P and 7, = .
FEzercise 20 (Binary Markov chain). Let
a o«

1—
Pz[ 3 1_5} a, e [0,1]

be the generic Markov matrix on the two elements set S = {0, 1}. An invariant probability
function is 7 = [p 1 — p| such that

p=p(l-—a)+(1-p)s

1—p=pa+(1-p)(1l-7)
The two equations are dependent because the rank of P — I is 1. It follows
pla+B)=p and (1-p)la+pB)=qa.
10
0 1)
we assume « + § > 0. In such a case, the invariant probability function is

_ |8 a
= [m Q—JFB] .
16
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) : . 101 12 12 .
For example, the invariant probability of both P = [1 0] and P = {1 21 /2] is
11

T = [5 5]. Note that the first example produces a “deterministic” process while the
second produces and “independent” process.
The characteristic equation of P is

det(P—/\I)zdet[(l_%)_)\ (1-%)4] N (Q—a-BfA+(1—a—-F)=0.

One solution is A; = 1, while the other is A\, = 1 — a — 3. The first eigen-vector is a

vector
U11 - U1
= h that =0
b lUm] Sue A l—ﬁ ﬁ] {Uzl]
e.g., u; = [1 1]*. The second eigen-vector is a vector
Uy = [uu] such that [ﬁ a] luu] =0
U22 B al|uz
e.g., Uy = [—a ﬁ]*. It follows that

PzU[l , }U‘l with U = [u ug]zll _O‘]

0 1—a-p 1 B
because det U = o + 8 > 0. It follows that
Pr—U [[1) i v ﬁ)"] Ut
Assume o + 8 # 2, so that —1 <1 —a — 8 < 1. We have
lim P" =
n—a0

. |1 0 ) 1 [1 -]t 0][5
A s U=t O | | R

B _a

a+B  a+pB | _ ™
B e | T xl
at+fB  a+f

In conclusion: if o + 3 = 0 all probability functions are invariant and there is no con-
vergence to the invariant probability; If o+ 3 > 0 there is a unique invariant probability.
If moreover o+ 5 # 2 there is convergence. Another interesting case happens when o = 0
while 5 > 0.

— Q

3.5. Aside: graphs. A relation on a set V is a subset £ of V x V and its indicator
function presented as a matrix is its adjacency matriz E. The couple (V,E) is called a
graph with vertexes V' and edges £. A graph is undirected if the relation is symmetric.
A path from z to y of length n is a sequence = = xy, ..., x, = y such that (z;,_1,z;) € &,
1 =1,...,n. A pathis a cycle if z = y. A graph is connected if for all x,y € V there
is a path from x to y. In a connected graph, the minimum length of a path connecting
two vertexes v and w is a distance. A tree is a connected graph without cycles. A rooted
tree is a tree with a distinguished vertex vg. In a rooted tree (V, &, vy) all vertexes are
classified according their distance from the root. A rooted directed tree is a rooted tree
where the relation is restricted in such a way that the distance from the root increases
in the direction of the edges. This directed relation allows to define the childs and the
parent of a vertex. The root has no parent. The leaves have no childs. A situation is a

non-leaf vertex. Outcome is another name for leaf.
17



In a rooted directed tree each vertex of depth k can be coded as vyv; - - - vy where v;
range in a set of codes for the k-layer. Such a tree is associated to a space of events as
follows. Let ) be the set of all leaves. Then each situation is naturally associated with a
set of leaves. Notice that any vertex of the tree can be chosen as a root. Different root
correspond to different event trees which correspond to different “causal explanations” of
the leaves.

Ezercise 21 (Probability tree). If interested, have a look to [2]. Each directed edge (v, w)
of a rooted tree can be decorated with a probability p(w|v) > 0 in such a way that the sum
of probabilities on each floret is 1, 3} -, p(w|v) = 1. For each leaf w there is a unique
path from the root and the product of all decorations provides a probability function
on the set of leaves. The decoration are conditional probabilities for the corresponding
descendant leaves. It is possible to consider dynamic models where individuals move
down the tree at different speeds and, when do move, choose a child according to the
assigned probabilities. All the construction is clarified on simple examples.

FEzercise 22 (Conditional independence). The properties
P(A|BnC)=P(A|B) ,
P(C|Bn A) =P (C|B) ,
P(AnC|B)=P(A|B)P(C|B) ,
are equivalent. The property in the first two equations is called sufficiency and the

property in the last equation is called conditional independence.

Exercise 23. The Markov property is symmetric in the direction of time. If Xg,..., X,
is a MC, then the time-reversed process Y, = X,,_;, is a Markov process with transitions
P(Ythl = l‘\Yh = y) = P(anhfl = x|Xn7h = y) =
P(Xph1=2,Xpn=y PXepn=ylXpp1=2)P(X, p1=010)

P(Xn_p =) a P(Xn-n =)

Px,yﬂ-nfhfi (QZ’)
Tn—h(Y)

If moreover the MC is stationary that is m; = 7, then the time-reversed process is a
MC with the same invariant distribution and transitions

. W(x)Px,y
Que =21y

Equivalently, we can say that the 2-dimensional distribution are given by

]P)(Xs = .’L’,X3+1 = y) = 71-(l‘)Pae,y = W(y)vam :

A stationary Markov chain is reversible if Q);; = P;;. Equivalently, if 7 is a probability
function such that

71-(:L‘)Pat,y = ﬂ(y)Py,x s
we sum the previous relation over x to get
Z 7T(Qj)Pac,y = 7r(y) Z P, T T W(y) )
zesS zesS

so that 7 is indeed an invariant probability and the MC constructed from 7 and P is

reversible.
18



Given a Markov matrix P, if there exists a positive function «: S such that x(z)P,, =
k(y) P, then we can normalize x. In such a case we have an immediate way to compute
the invariant probability.

Ezercise 24. Let G = (5,&) be a graph. For each vertex x € S the degree of x, deg z, is
the number of edges from z. Let E be the adjacency matriz of G. The degree as a row
vector is F'1. Define the Markov matrix

P = diag (E1)'E .

i.e., the transitions

degx

L if y is connected with z,
Pry =

0 if ¢ is not connected with x.
Observe that x is connected to y if, and only if, y is connected to x, hence
(degz)Ppy = (v > y) = (y > x) = (degy) Py -
It follows that the invariant probability is
~ degx
m(x) = —Zyes dogy
and the MC is reversible.

FEzercise 25 (Hastings-Metropolis). Consider the following problem: Given a Markov
matrix ) on a finite S and a probability function 7 on S, define the matrix

p_ )@z y) if x #y
T,y Qo + ZZ#E Qz.(1—a(z,2) fz=y )
where 0 < a(x,y) < 1 Notice that P,, > 0 and
Z P:Jc,y = Z Qx,y&<xvy) + Qx,x + Z Qx,Z(l - CY(:C? Z)) = Q:Jc,x + Z Qx,z =1.
yes Y#T ZFT Z#T
The Markov matrix P is reversible with invariant probability = if
One possible choice is

T(Y)Qy

alz,y) =1 A ——=

T(2)Quy ‘
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