PROBABILITY 2018
HANDOUT 4: MARTINGALES, CONDITIONAL INDEPENDENCE

GIOVANNI PISTONE

CONTENTS
1. Martingales 1
2. Conditional independence 2
References 5
1. MARTINGALES
1. A finite or infinite sequence Xy, X1,... of integrable real random variables of the

probability space (2, F, i) is a martingale if all £k > 1 in the index set it holds
E(AXP]CLX'Z 1< ]{Z) = Xk,1

that is,
E (Xkg(Xo, ..., Xk-1)) = E(Xk—19(Xo, ..., Xi—1))

for all bounded measurable g. Notice that the property of being a martingale refers to a
condition on the conditional distribution of the variables in the sequence with respect to
the past namely, if px,|x,,..x,_, is the conditional distribution of X}, given X, ..., X},
then the martingale condition is

The theory of martingales is fully developed in [1, Part B]. Here we discuss only a few
basic fact in form of exercises.

Exercise 1. (1) Let X,Y be Bernoulli variables with pxy(z,y) = P (X =2,Y =y),
x,= 0,1. Write the condition on the joint probability function pxy equivalent to
[X, Y] being a martingale.

(2) Let [X Y]T ~ Ny (i, ). Write the condition on p and ¥ equivalent to [X,Y]
being a martingale.

(3) Let be given a sequence of measurable functions Xj, ..., X,, of the measurable
space (€2, F). The set of all probabilities such that the given sequence is a mar-
tingale is a convex set.

(4) Let Fi, k = 0,...,n, be an increasing sequence of sub-o-algebras of F. Such a
sequence is called a filtration. The sequence X, k = 0,...n, is adapted to the
given filtration if each X, is Fj-measurable. Each sequence is adapted to the
natural filtration Fj, = 0Xg,..., Xk, k = 0,...n. Show that the sequence is a
martingale if

E (X Feoo1) = Xpo1 k=1
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(5) Assume the sequence of real integrable random variables [Xo, ..., X,] is adapted
to the filtration (Fy)}_,. Then, it is a martingale if, and only if, E (X} — Xy_1|Fr—1) =

0.

(6) Let Zy,... be a sequence of independent integrable real random variables of the
probability space (€2, F, 1) and assume E (Z;) = 0 for all k. The sequence X} =
Du<i B =0,1,..., is the symmetric random walk. Show that X, X;,... is a

martingale. Let ¢: R — R be a bounded measurable function. Under which
condition the sequence ¢(Xj), ¢(X1),... is a martingale?

(7) Let Z1,...,Z, be a sequence of independent integrable real random variables of
the probability space (€2, F, ). Let be given a initial value zy € R and sequence
of bounded measurable functions s;: R¥"! — R. Let us call such a sequence a
strategy. Define Xy = zg and Xy = Xy_1 + Zgsk(Xo, ..., Xx_1). Such a sequence
is called the total gain. Show that it is a martingale for any strategy if, and only if,
E (Z;) =0, k = 1. Show that in fact it is enough to assume that E (Z;|Fr_1) = 0.
No non-anticipating strategy can transform a martingale into something else.

(8) Consider a martingale Xy, k = 0,...n for the filtration Fy, k = 0,...,n. A
stopping time or optional time is a random variable T" with values in {0, ..., n} U
such that {T' =k} € F, k = 0,...,n. Give an example of stopping time. The
stopped process is defined by X} = X7,;. Show that the stopped process is a
martingale for the same filtration as the original one. The stopped process is a
martingale based on a strategy.

(9) A Gaussian vector X = [X--- X, ] is a martingale if, and only if, the increments
Xr — Xp_1, k = 1, are independent. Compute the distribution of X. Which
are the free parameters in the distribution of X7 [Hint: Consider the increments
Zi = X — Xp—1, k= 1,...,n. If (Fi)p_, be the natural filtration. We want
E (Zk|Fr—1) = 0, k = 1. The filtration generated by X, Z1,... is equal to the
natural filtration of [X]|7_;. It follows that the sequence x¢, Zi, ... is indepen-
dent.]

2. CONDITIONAL INDEPENDENCE

Conditional independence is a key property in Statistics e.g. Graphical Models, in
Stochastic Processes e.g., Markov processes, in Random Fields, in Machine Learning.
2 (Conditional independence).
(1) The non-null events A, B,C are such that A and C' are independent given B,
AlLC| B, if each one of the following equivalent conditions are satisfied:
P(An C|B) =P (A|B)P(C|B)
P(A|Bn C) =P (A|B)
P(AnBnC)P(B)=P(AnB)P(BnC(C)
Notice that the last condition is meaningful even if some of the events has is a
null event.
(2) Random variables Y7, Y3 are conditionally independent given the random variable
Ys, Y11LY3|Y5 if each one of the following equivalent conditions are satisfied. If
fi,i=1,...,3, are bounded,
E(f1(Y1) f5(Y3)[Y2) = E (f1(Y1)[Y2) E (f5(Y3)[Y2)
E(fi(Y1)[Y2,Y3) = E(f1(Y1)[Y2)



(3) Let fi(v;,v3)v» be the conditional distribution of (Y1, Y3) given Y5. Then, Vi 1LY5|Y;

if, and only if, vy va)ve = tviye @ Uys|vs-
(4) A stochastic process Y7, ..., Yy is a Markov Process if

(Yi,.... V)L (Yy,...,YN)| Y, k=2....N—1.
Ezercise 2. Prove the equivalence of the statements for conditional indendence of events.

Exercise 3. Prove the equivalence of the two statement for conditional independence of
random variables.

Exercise 4. Let be given a Gaussian white noise Zi,..., 7, and a further independent
gaussian random variable X,. For each real o define X}, = aXy_ 1 + Z;, £ = 1. Show
that it is a Markov process.

Proposition 1. Let be given

Y; by Y Y2 X3
Y =|Yo] ~Npusngins ba |, [ X21 a2 2o
Ys b3 Y31 M3z a3

We have Y1 LY3| Yy if, and only if, 313 = X1234,%03. In such a case,
Yi _ by Y12 | vt Yip 0
l}/é] (}/2 - y2) ~ Nn1+n3 ([b3] + l232] 222<y2 - b2)7 O 23|2

Vil(Ya = yo, Y3 = y3) = Y1|(Ya = 42) ~ Ny, (b1 + £1255,(y2 — ba), Z1po)

and

Proof. Let us apply the conditioning formula to the partitioned Gaussian vector

Y; by Y1 Sz Zie
Yo | ~ Newvsngyens | [ 03] | a1 Xs3, Xa2
Y, by Yo1 o3 ! Moo

Let us compute the matrix
p DIFP I
Lage = Sz)p¥a = lzz] Y50 = lzgzzd
and the conditional variance

Yazyz = Bazyas) — LazypXaaz) =
Ell 213 212232
lzm 33 Y3225, [Fr %]
211 213 o 2122;2221 21223_2223
Y31 X33 Y3aX3mN01 LgoX3, Y03

Y1 — YXhYa Y1z — XX
Y31 — V3N gz — YgoXgndas

Then Y;1Y3]Ys if, and only if, the conditional variance is block-diagonal, ¥i3 =
2122;2223.
Consider now the partition

Y bl [ Zui¥e Y

572 ~ Nn1+(n2+n3) 62 ) E21 : 222 223
Y3 bs g1 ! Xzp N3
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We have

I Y
22 23
L) = 21(23)2253)(23) - [212 213] l232 233]

and )
Yoo X by
Bucm = B~ LS =3 -5 5[5 52 [B2].
The conditional distribution is

Yi[(Ya = yo, Y3 = y3) ~

+
Yo — bo Yoo a3 o1
No, [ 01+ L DT PHTIDY
( 1 1(23) [y3 _ b3i| 11 [ 12 13] [232 233] lzi’)l
We can write the conditional independence condition as

I —XLy ¥ —N XY + 2
[212 213] [O 21—2 23] = [ 012 12 221 % 13] = [212 0]

This computation points to the Schur complement lemma. Check first that
Yoo Tas| _ [ 1 0] [Z2 O ][I B33
Yo X33 Yap¥g, I 0 M| [0 T.

Then check that

Yoo 223 +: I —S5H3e| [25; 0 I
Yo oy i 0 =5,||-Desh 1

It follows that

Yo Tas|”
L =[S Su] [52 32] -

[E N ] I %3552 0 1 0]
2o =Bl I 0 S| [-aXs, I]

5 0 I of n 1 0|
[212 O] [ 0 2;2] [_232232 [] = [212222 O] Nsh 1]
[2122;2 0] ,

so that,

by
Sijes) = L1 — [S1253, 0] [zzj = i1 — S1X5 80 = Sy

Ezercise 5. Let Y = (Y1,Y3,Y3,Y)) be a Gaussian vector with zero mean and such that
each component is standard. Write the conditions imposed on the elements of the covari-
ance matrix by the Markov property.

Ezercise 6 (Martingale problem). (1) Let Yy, Y3,...,Yn be a Markov process, each
random variable having values in the measurable space (S, S). Given any bounded
measurable ¢: S — R define the new process X = »(Yo),

X7 = X7+ 6(Ys) —E(6(Yi)[Yo, ..., Yin) , t>1.
Then, Xf is (Yp, ..., Y;)-measurable and has the martingale property
E (Xf’ YO,...,YH> — X7,
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(2) Because the Markov property is a property of conditional independence, we know
that

B (60 ¥ Yios) = BOYDIYinr) = | 9(0) vy (@yl¥ics)

The family of operators ¢ — A;¢, t = 1,..., N, defined by A¢(x) = ¢(x) —
§&(y) tvipvi_, (dy|z) is called the generator of the Markov process. We have

Xt(b - be—1 = A¢(Xf—1>
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