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Conditioning is one among the core concepts in reasoning about uncertainty in Proba-
bility, in Statistics, in Economics, in Machine Learning. In this notes we refer mainly to
the textbook by D. Williams [2, Ch. 9]. A concise and fully rigorous review of the basic
mathematics is in the monograph by C. Dellacherie and P.-A. Meyer [1, Ch. I-ITI].

1. CONDITIONAL EXPECTATION

1 (Definition). Let (2, F, i) be a probability space, X a real random variable with finite
expectation, E, (| X|) < +o, G a sub-c-algebra of F. A random variable X is a version
of the conditional expectation of X given G if, and only if,

(1) X is integrable and G-measurable;
(2) for all bounded and G-measurable random variable it holds

B, (GX) = B, (GX) .

As the equation E,, (G()? — X)) =0, G € L*(G), is linear in G and continuous under

bounded pointwise convergence, it is enough to check it for random variables of the for
1¢, C e C, C m-system generating G. [Monotone-Class Theorem [2, 43.14].]

2 (Almost sure equivalence). If X 1, )A(Q, are two versions of the conditional expectation of
X, then E, <G()A(1 — )A(Q)> =0 i.e. )Afl = )A(Q p-almost-surely. [Take G = sign ()A(l — )A(g>

to get E, (‘)2'1 — )ACQD = 0.] More generally, if X; = X, p-almost-surely, then )A(l = )?2
p-almost-surely. We write E, (X|G) to denote the p-class of versions and, with abuse
of notation, X = E, (X|G). If L'(F,u) is the vector space of classes p-equivalent real
random variables, there exists a mapping

L'F,p)>X —E,(X|G)e LY (G, ) .

3. The existence issue i.e., the fact that the previous mapping is actually defined on
all of L'(F,pu), is discussed in [2, 99.5]. We skip this topic, together with a related
issue namely, the notion of p-complete o-algebra. Many proofs of existence are actually
available, either based on some result of Functional Analysis, or based on results from
advanced Measure Theory such as the Radon-Nikodym Theorem. Here, we are mainly
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focused on either computing a version of the conditional expectation of a given random
variable, or checking that a random variable is a version of the conditional expectation
of some random variable. We have defined the conditional expectation for integrable
random variables. It is possible to define the conditional expectation for positive random
variables, see the comments below about properties of the conditional expectation.

4. Projection property Let H be a sub-o-field of G. Then E, (E, (X|G)|H) = E, (X|H).
In fact, the conditional expectation X — E,, (X|F) operator is a projection operator on
LY(F,p). Tt is the transposed operator of the injection operator L*(G) — L*(F).

5. Examples.
(1) If G = {5, Q}, then E, (X|G) = E, (X).
(2) If G = F, then E, (X|G) = X.
(3) Let {Ay,...,A,} be a measurable partition of  and let G = o(Ay,..., A4,).
Assume p(A;) #0, 5 =1,...,n. It holds

L (X]G) = 2

(4) Let p be a probability measure (2, F) and p - pu a u-absolutely-continuous finite
measure. Then the restriction of the measure to G is (p- u)|; = E, (p|G) - (plg)-

X dp n
~ VB, (X]4)) 14
j=1

6 (Conditioning to a random variable). Let (S,S) be a measurable space, Y: Q — S a
measurable mapping, and Y = o(Y) = Y !(S). A real random variable is }-measurable
if, and only if, it is of the form ¢oY’, where ¢ is a real random variable on (S, S). [The “if”
part follows from (¢ oY)~ }(B) < Y; the “only if” part is true because of the Monotone
Class Theorem, see [2, 93.14].] In this situation, the definition of conditional expectaion
is rephrased as follows. A version of the conditional expectation of X given o(Y) is a u-

integrable real random variable of the form qgu, x oY such that for all bounded measurable
¢: S — R it holds E, <¢(Y)$M,X(Y)> — B, (6(Y)X). Notice that we could write this in

terms of the joint distribution of the random variables X and Y as qu(y)gz?u x(y) py (dy) =
§o(y)x px,y(dedy). An imprecise, but widely used, notation is ¢, x(y) = E, (X|Y = y),
which is called the expected value of X, given Y =y.

7. Special cases.
(1) If X LY then E, (X|o(Y)) = E, (X). in fact,

Jd)(y)x pxy (dzdy) = f¢(y) (Jx ux(dx)) py (dy) -

(2) X LY then E, (f(X,Y)|o(Y)) = f(2,Y) ux(dz). In this case we have

fcﬁ (2,9) px @ py (dody) = fcﬁ (ff(fv,y) ux(dx)) py (dy) -
(3) Let X, Y, be random variables in R™ such that (X —Y) L Y. Then
Ex (F(Y)lo(¥)) = B, (F((X = Y) 4 V)o(V) = | F(s.Y) o (ds)

Cf. the Gaussian case.



(4) If pxy(dz,dy) = pxy - vx ® vy, then puy = (§p(z,y) vx(dz)) - vy(dy) and the
characteristic equality becomes

Jotmoxt) ([se vstan)) i) = [ot) ([ pxy vxta)) wrian.

hence we can take

x) = [ 2 pxvlaly) vxlde), e (aly) = P22

8. Properties. All random variables are defined on the probability space (€2, F, ) and G
is a sub-o-algebra of F

(1) Normalization. E, (1|G) = 1.

(2) G-Linearity. If E, (X|G) = X and E, (Y|G) = Y, then E, (AX + BY|G) =
AX + BY pralmost-surely if A, B € L2(G).

(3) Positivity. If X > 0 and E, (X|G) = X, then
ity together imply monotonicity. [Hint: take G
property]

(4) Normalization, linearity and monotonicity together imply Jensen inequality. As-
sume ®: R — R and assume both X and ®(X) are integrable. Let x +— a + bz <
®(z). Then a + bE, (X|G) < E, (P(X)|G). Chose a version X = E, (X|G) Be-
cause of the convexity, for each w € (2, there exists coefficients a(w), b(w) such that

A~

a(w) + b(w)X (w) = ®(X(w)). We have shown that ®(E, (X|G)) < E, (®(X)|9).
In particular, E, (| X]|G)* < E, (IX]%|G) if « > 1.

(5) Monotone convergence. If 0 < X, 1 X and X,, = E, (X,,|G), n € N, then random
variable X defined by X,, 1 X is such that E,, (Gf() — B, (GX)if0 < G e £L2(G).

It follows immediatly from the monotone convergence for the expectation [Notice
that here we are assuming each X, to be ’integrable so that the conditional
expectation is defined. This is not necessary if we define conditional expectation
for non-negative random variable as it was for che expectation. We do not consider
t/}}is generalization in this notes.] If moreover X happens to be integrable, then
X =E, (X|G). R

(6) Fatou lemma. If 0 < X, and X,, = E,, (X,,|G), n € N, then A, X, < X, if m >
n, so that E;, (Am=nXm|G) < Amsn B, (X,|G). From the monotone convergence it
follows E,, (G(liminf, ., X)) < E, (G(liminf, ., E, (X,|G))) if G € L*(G) and
G = 0. If liminf, ,,, X, is integrable, then we can write E,, (liminf,_,,, X,|G) <
liminf, . E, (X,|G).

(7) Dominated convergence. If in the fatou lemma we assume that the sequence
(Xn)nen is dominated by the integrable random variable Y| by considering the
non-negative sequence (Y — X,,),eny we can obtain the inequality

) .

If the sequence is convergent, then liminf,,_,, X, = lim, ., X,, = limsup,,_,, X,
hence liminf, ., E, (X,|G) = limsup,_,,, E, (X,|G) and the sequence of condi-
tional expectations is convergent to the expectation of the limit. The condition of
positivity can be dropped by decomposing the positive and negative part of the
sequence and the limit.

X = 0. Linearity and positiv-
=1

(%<0} in the characteristic

By, (Tim inf X,

n—00

Q) < liminfE, (X,|9) < limsupE, (X,|G) < E, <limsuan
n—ao0

n—a0 n—oo
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2. CONDITIONAL DISTRIBUTION
9 (Transition probability measure). Given a product measurable space (£ x Qq, F1 ® F3)
a transition is a mapping py2: Fi x (23 such that

(1) for each xy € Q2 tha mapping Fi 3 Ay — py2(Aq|x2) is a probability measure on
(Qh ]:1) and
(2) for each A; € F; the mapping Qy 3 x5 — py)2(Aq|x2) is Fo-measurable.

10 (Integration of probability measures). Given a transition p2 on (€4 x Qo, F1 ® F3)
and a probability measure puy on (€, F3), there exists a unique probability measure
p = § pu1j2 dpo on the product measurable space such that for each positive or p-integrable
function f: Qg x Q5 3 (21, 22) — f(x1,22) it holds

ff dp = f(ff(l‘hf@) Mlz(dl’l’l’ﬂ) p2(dxs) -

The measure p is characterised on functions of the form f(z1,22) = fi(x1) fa(x2) by

Jf1f2 dp = J (J fi(ry) H12(d9€1!9€2)> fa(2) pa(dzs) .

[The proof is a simple variation of the argument for Fubini theorem.]

11 (Transition densities). A simple case occurs when the transition has the form
M1\2(A1|l’2) = J p1|2(x1|x2) vi(dz), Aye Fi,x0€Qy
Aq

where (x1,2) — pij2(x1|r2) is measurable on the product space (£2;,Q, F1 ® F2) and
o1 — pija(@1|z2) is a vi-probability density for each x5 € 5. In such a case,

f (J fil@) “1|2(dx1|x2)) fa(w2) po(ds) =
J (J fl(wl)pm(xl|x2)y1(dx1)) Fols) ialdiny)

f fi(z1) fa(@2)prja(w1]m2) vi(dry)pa(des)

that is, p = pyj2 - v1 ® po. If moreover the second measure has itself a density, pus = py - 15,
then = (p12 @ p2) - 11 @ 11

12 (Examples). (1) Let 11,75 be independent and Exp(1). Then the distribution of
Ty given Ty + 17 =t is uniform on 0, ¢[.
(2) If (Y1,Ys) ~ Ny, (0, %), det 3 # 0, find the conditional distribution of Y; given
Ys.
(3) If Y3, Yy are independent and N (0, 1), find the distribution of (y;, Ys) given Y2 +
V2.

13 (Regular version of the conditional expectation). With the notations above, denoting

with X, X5 the coordinate projection, the random variable f Xo) = f(21, X2) u1|2(d:z:1|X2)
is a version of the conditional expectation E,, (f(X1, X2)|o(X2)), namely a regular version.
In fact,

B (%0 Xa060) = [ ([ o020) oplaonton)) ateo) alden) = B, (Fxg62)
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14 (Conditional independence (CI) of events). Conditional independence is a key property
in Statistics e.g., in Graphical Models, in Stochastic Processes, in Markov processes, in
Random Fields, in Machine Learning.
The nonzero events A, B, C' are such that A and C' are independent given B, A | C'| B,
if each one of the following equivalent conditions are satisfied:
P(AnC|B)=P(A|B)P(C|B) (CI)
P(AnBnC)=P(AB)P(C|B)P(B) (J-CI)
P(A|IBnC)=P(AB) (M)
P(AnBnC)=P(A|B)P(B|C)P(C) (J-M)
P(AnBnC)P(B)=P(AnB)P(BnC) (A)
In fact, the first four equalities become the fifth one if the conditional probabilities are

computed in terms of joint probabilities. The algebraic form (A) can be written in terms
of indicator functions as

E(141p10)E(1p) = E(1415)E(151¢) .
which shows the bi-linearity in 14 and 1. For example, writing 14 = 1 — 1 4c one gets
Al C|B.

15 (Conditional Independence for random variables). Random variables Y1,Y3 are condi-
tionally independent given the random variable Yo, Y1 I Y3|Y; if each one of the following
equivalent conditions are satisfied. If f;, ¢ = 1,...,3, are bounded,

E(fi(11) f5(Y3)[Y2) = E(f1(Y1)|Y2) E (f3(Y3)[Y2)
E (fi(Y1)[Y2,Y3) = E(fi(Y1)]Y2)

Let us prove the equivalence. The second one holds if, and only if, for all bounded
f2(Yz), f5(Y3)
E(fi(Y1) f2(Y2) f5(Y3)) = E(E (f1(Y1)[Y2) fo(Y2) f3(Y3))
The LHS is equal to
E(E (/i(Y1) f5(Y3)[Y2) f2(Y2))
and the RHS is equal to

E(E (fi(Y1)[Y2) f2(Y2) E (f3(Y3)[Y2))

It follows that the first equation holds. By reversing the computation we get the other
implication.

When a regular version of the conditional expectation given Y; is available, then con-
ditional independence is equivalent to the product form of the transition.

16 (Markov process). A stochastic process Y7, ..., Yy isa Markov Process if (Yy,...,Y;) L Y,
k=1,2,...,N. Equivalently,

E(f (Vi Vo) Vhy o, Vi) = E(f(Yar o, Y)[Ya)

LYY
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