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Conditioning is one among the core concepts in reasoning about uncertainty in Proba-
bility, in Statistics, in Economics, in Machine Learning. In this notes we refer mainly to
the textbook by D. Williams [2, Ch. 9]. A concise and fully rigorous review of the basic
mathematics is in the monograph by C. Dellacherie and P.-A. Meyer [1, Ch. I-III].

1. Conditional expectation

1 (Definition). Let pΩ,F , µq be a probability space, X a real random variable with finite

expectation, Eµ p|X|q ă `8, G a sub-σ-algebra of F . A random variable pX is a version
of the conditional expectation of X given G if, and only if,

(1) pX is integrable and G-measurable;
(2) for all bounded and G-measurable random variable it holds

Eµ

´

G pX
¯

“ Eµ pGXq .

As the equation Eµ

´

Gp pX ´Xq
¯

“ 0, G P L8pGq, is linear in G and continuous under

bounded pointwise convergence, it is enough to check it for random variables of the for
1C , C P C, C π-system generating G. [Monotone-Class Theorem [2, ¶3.14].]

2 (Almost sure equivalence). If pX1, pX2, are two versions of the conditional expectation of

X, then Eµ

´

Gp pX1 ´ pX2q

¯

“ 0 i.e. pX1 “ pX2 µ-almost-surely. [Take G “ sign
´

pX1 ´ pX2

¯

to get Eµ

´
ˇ

ˇ

ˇ

pX1 ´ pX2

ˇ

ˇ

ˇ

¯

“ 0.] More generally, if X1 “ X2 µ-almost-surely, then pX1 “ pX2

µ-almost-surely. We write Eµ pX|Gq to denote the µ-class of versions and, with abuse

of notation, pX “ Eµ pX|Gq. If L1pF , µq is the vector space of classes µ-equivalent real
random variables, there exists a mapping

L1
pF , µq Q X ÞÑ Eµ pX|Gq P L1

pG, µq .

3. The existence issue i.e., the fact that the previous mapping is actually defined on
all of L1pF , µq, is discussed in [2, ¶9.5]. We skip this topic, together with a related
issue namely, the notion of µ-complete σ-algebra. Many proofs of existence are actually
available, either based on some result of Functional Analysis, or based on results from
advanced Measure Theory such as the Radon-Nikodým Theorem. Here, we are mainly
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focused on either computing a version of the conditional expectation of a given random
variable, or checking that a random variable is a version of the conditional expectation
of some random variable. We have defined the conditional expectation for integrable
random variables. It is possible to define the conditional expectation for positive random
variables, see the comments below about properties of the conditional expectation.

4. Projection property Let H be a sub-σ-field of G. Then Eµ pEµ pX|Gq|Hq “ Eµ pX|Hq.
In fact, the conditional expectation X ÞÑ Eµ pX|Fq operator is a projection operator on
L1pF , µq. It is the transposed operator of the injection operator L8pGq Ñ L8pFq.

5. Examples.

(1) If G “ tH,Ωu, then Eµ pX|Gq “ Eµ pXq.
(2) If G “ F , then Eµ pX|Gq “ X.
(3) Let tA1, . . . , Anu be a measurable partition of Ω and let G “ σpA1, . . . , Anq.

Assume µpAjq ‰ 0, j “ 1, . . . , n. It holds

Eµ pX|Gq “
n
ÿ

j“1

ş

Aj
X dµ

µpAjq
1Aj

“

n
ÿ

j“1

Eµ pX|Ajq1Aj
.

(4) Let µ be a probability measure pΩ,Fq and p ¨ µ a µ-absolutely-continuous finite
measure. Then the restriction of the measure to G is pp ¨ µq|G “ Eµ pp|Gq ¨ pµ|Gq.

6 (Conditioning to a random variable). Let pS,Sq be a measurable space, Y : Ω Ñ S a
measurable mapping, and Y “ σpY q “ Y ´1pSq. A real random variable is Y-measurable
if, and only if, it is of the form φ˝Y , where φ is a real random variable on pS,Sq. [The “if”
part follows from pφ ˝ Y q´1pBq Ă Y ; the “only if” part is true because of the Monotone
Class Theorem, see [2, ¶3.14].] In this situation, the definition of conditional expectaion
is rephrased as follows. A version of the conditional expectation of X given σpY q is a µ-

integrable real random variable of the form pφµ,X ˝Y such that for all bounded measurable

φ : S Ñ R it holds Eµ

´

φpY qpφµ,XpY q
¯

“ Eµ pφpY qXq. Notice that we could write this in

terms of the joint distribution of the random variables X and Y as
ş

φpyqpφµ,Xpyq µY pdyq “
ş

φpyqx µX,Y pdxdyq. An imprecise, but widely used, notation is φµ,Xpyq “ Eµ pX|Y “ yq,
which is called the expected value of X, given Y “ y.

7. Special cases.

(1) If X KK Y then Eµ pX|σpY qq “ Eµ pXq. in fact,
ż

φpyqx µX,Y pdxdyq “

ż

φpyq

ˆ
ż

x µXpdxq

˙

µY pdyq .

(2) If X KK Y then Eµ pfpX, Y q|σpY qq “
ş

fpx, Y q µXpdxq. In this case we have

ż

φpyqfpx, yq µX b µY pdxdyq “

ż

φpyq

ˆ
ż

fpx, yq µXpdxq

˙

µY pdyq .

(3) Let X, Y , be random variables in Rm such that pX ´ Y q KK Y . Then

Eµ pfpY q|σpY qq “ Eµ pfppX ´ Y q ` Y q|σpY qq “

ż

fps, Y q µpX´Y qpdsq .

Cf. the Gaussian case.
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(4) If µX,Y pdx, dyq “ pX,Y ¨ νX b νY , then µY “
`ş

ppx, yq νXpdxq
˘

¨ νY pdyq and the
characteristic equality becomes

ż

φpyqφXpyq

ˆ
ż

ppx, yq νXpdxq

˙

¨ νY pdyq “

ż

φpyq

ˆ
ż

x pX,Y νXpdxq

˙

νY pdyq ,

hence we can take

pφXpyq “

ż

x pX|Y px|yq νXpdxq, pX|Y px|yq “
pX,Y px, yq

pXpxq
.

8. Properties. All random variables are defined on the probability space pΩ,F , µq and G
is a sub-σ-algebra of F

(1) Normalization. Eµ p1|Gq “ 1.

(2) G-Linearity. If Eµ pX|Gq “ pX and Eµ pY |Gq “ pY , then Eµ pAX `BY |Gq “
A pX `BpY µ-almost-surely if A,B P L8pGq.

(3) Positivity. If X ě 0 and Eµ pX|Gq “ pX, then pX ě 0. Linearity and positiv-
ity together imply monotonicity. [Hint: take G “ 1t pXď0u in the characteristic

property]
(4) Normalization, linearity and monotonicity together imply Jensen inequality. As-

sume Φ: RÑ R and assume both X and ΦpXq are integrable. Let x ÞÑ a` bx ď

Φpxq. Then a ` bEµ pX|Gq ď Eµ pΦpXq|Gq. Chose a version pX “ Eµ pX|Gq Be-
cause of the convexity, for each ω P Ω, there exists coefficients apωq, bpωq such that

apωq ` bpωq pXpωq “ Φp pXpωqq. We have shown that ΦpEµ pX|Gqq ď Eµ pΦpXq|Gq.
In particular, Eµ p|X||Gqα ď Eµ p|X|

α
|Gq if α ě 1.

(5) Monotone convergence. If 0 ď Xn Ò X and pXn “ Eµ pXn|Gq, n P N, then random

variable pX defined by pXn Ò pX is such that Eµ

´

G pX
¯

“ Eµ pGXq if 0 ď G P L8pGq.
It follows immediatly from the monotone convergence for the expectation [Notice
that here we are assuming each Xn to be ’integrable so that the conditional
expectation is defined. This is not necessary if we define conditional expectation
for non-negative random variable as it was for che expectation. We do not consider
this generalization in this notes.] If moreover X happens to be integrable, then
pX “ Eµ pX|Gq.

(6) Fatou lemma. If 0 ď Xn and pXn “ Eµ pXn|Gq, n P N, then ^měnXm ď Xm if m ě

n, so that Eµ p^měnXm|Gq ď ^měn Eµ pXm|Gq. From the monotone convergence it
follows Eµ pGplim infnÑ8Xnqq ď Eµ pGplim infnÑ8 Eµ pXn|Gqqq if G P L8pGq and
G ě 0. If lim infnÑ8Xn is integrable, then we can write Eµ plim infnÑ8Xn|Gq ď
lim infnÑ8 Eµ pXn|Gq.

(7) Dominated convergence. If in the fatou lemma we assume that the sequence
pXnqnPN is dominated by the integrable random variable Y , by considering the
non-negative sequence pY ´XnqnPN we can obtain the inequality

Eµ

´

lim inf
nÑ8

Xn

ˇ

ˇ

ˇ
G
¯

ď lim inf
nÑ8

Eµ pXn|Gq ď lim sup
nÑ8

Eµ pXn|Gq ď Eµ

ˆ

lim sup
nÑ8

Xn

ˇ

ˇ

ˇ

ˇ

G
˙

.

If the sequence is convergent, then lim infnÑ8Xn “ limnÑ8Xn “ lim supnÑ8Xn

hence lim infnÑ8 Eµ pXn|Gq “ lim supnÑ8 Eµ pXn|Gq and the sequence of condi-
tional expectations is convergent to the expectation of the limit. The condition of
positivity can be dropped by decomposing the positive and negative part of the
sequence and the limit.
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2. Conditional distribution

9 (Transition probability measure). Given a product measurable space pΩ1ˆΩ2,F1bF2q

a transition is a mapping µ1|2 : F1 ˆ Ω2 such that

(1) for each x2 P Ω2 tha mapping F1 Q A1 ÞÑ µ1|2pA1|x2q is a probability measure on
pΩ1,F1q and

(2) for each A1 P F1 the mapping Ω2 Q x2 ÞÑ µ1|2pA1|x2q is F2-measurable.

10 (Integration of probability measures). Given a transition µ1|2 on pΩ1 ˆ Ω2,F1 b F2q

and a probability measure µ2 on pΩ2,F2q, there exists a unique probability measure
µ “

ş

µ1|2 dµ2 on the product measurable space such that for each positive or µ-integrable
function f : Ω2 ˆ Ω2 Q px1, x2q ÞÑ fpx1, x2q it holds

ż

f dµ “

ż
ˆ
ż

fpx1, x2q µ1|2pdx1|x2q

˙

µ2pdx2q .

The measure µ is characterised on functions of the form fpx1, x2q “ f1px1qf2px2q by
ż

f1f2 dµ “

ż
ˆ
ż

f1px1q µ1|2pdx1|x2q

˙

f2px2q µ2pdx2q .

[The proof is a simple variation of the argument for Fubini theorem.]

11 (Transition densities). A simple case occurs when the transition has the form

µ1|2pA1|x2q “

ż

A1

p1|2px1|x2q ν1pdxq, A1 P F1, x2 P Ω2

where px1, x2q ÞÑ p1|2px1|x2q is measurable on the product space pΩ1,Ω2,F1 b F2q and
x1 ÞÑ p1|2px!|x2q is a ν1-probability density for each x2 P Ω2. In such a case,

ż
ˆ
ż

f1px1q µ1|2pdx1|x2q

˙

f2px2q µ2pdx2q “

ż
ˆ
ż

f1px1qp1|2px1|x2qν1pdx1q

˙

f2px2q µ2pdx2q “

ĳ

f1px1qf2px2qp1|2px1|x2q ν1pdx1qµ2pdx2q ,

that is, µ “ p1|2 ¨ν1bµ2. If moreover the second measure has itself a density, µ2 “ p2 ¨ν2,
then µ “ pp1|2 b p2q ¨ ν1 b ν2

12 (Examples). (1) Let T1, T2 be independent and Expp1q. Then the distribution of
T1 given T1 ` T1 “ t is uniform on s0, tr.

(2) If pY1, Y2q „ Nn1`n2 p0,Σq, det Σ ‰ 0, find the conditional distribution of Y1 given
Y2.

(3) If Y1, Y2 are independent and N p0, 1q, find the distribution of py1, Y2q given Y 2
1 `

Y 2
2 .

13 (Regular version of the conditional expectation). With the notations above, denoting

withX1, X2 the coordinate projection, the random variable pfpX2q “
ş

fpx1, X2q µ1|2pdx1|X2q

is a version of the conditional expectation Eµ pfpX1, X2q|σpX2qq, namely a regular version.
In fact,

Eµ pfpX1, X2qgpX2qq “

ż
ˆ
ż

fpx1, x2q µ1|2pdx1|x2q

˙

gpx2q µ2pdx2q “ Eµ

´

pfpX2qgpX2q

¯

.
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14 (Conditional independence (CI) of events). Conditional independence is a key property
in Statistics e.g., in Graphical Models, in Stochastic Processes, in Markov processes, in
Random Fields, in Machine Learning.

The nonzero events A,B,C are such that A and C are independent given B, A KK C |B,
if each one of the following equivalent conditions are satisfied:

P pAX C|Bq “ P pA|BqP pC|Bq (CI)

P pAXB X Cq “ P pA|BqP pC|BqP pBq (J-CI)

P pA|B X Cq “ P pA|Bq (M)

P pAXB X Cq “ P pA|BqP pB|CqP pCq (J-M)

P pAXB X CqP pBq “ P pAXBqP pB X Cq (A)

In fact, the first four equalities become the fifth one if the conditional probabilities are
computed in terms of joint probabilities. The algebraic form (A) can be written in terms
of indicator functions as

E p1A1B1CqE p1Bq “ E p1A1BqE p1B1Cq .

which shows the bi-linearity in 1A and 1C . For example, writing 1A “ 1 ´ 1Ac one gets
Ac KK C |B.

15 (Conditional Independence for random variables). Random variables Y1, Y3 are condi-
tionally independent given the random variable Y2, Y1 KK Y3 |Y2 if each one of the following
equivalent conditions are satisfied. If fi, i “ 1, . . . , 3, are bounded,

E pf1pY1qf3pY3q|Y2q “ E pf1pY1q|Y2qE pf3pY3q|Y2q

E pf1pY1q|Y2, Y3q “ E pf1pY1q|Y2q

Let us prove the equivalence. The second one holds if, and only if, for all bounded
f2pY2q, f3pY3q

E pf1pY1qf2pY2qf3pY3qq “ E pE pf1pY1q|Y2q f2pY2qf3pY3qq

The LHS is equal to
E pE pf1pY1qf3pY3q|Y2q f2pY2qq

and the RHS is equal to

E pE pf1pY1q|Y2q f2pY2qE pf3pY3q|Y2qq .

It follows that the first equation holds. By reversing the computation we get the other
implication.

When a regular version of the conditional expectation given Y2 is available, then con-
ditional independence is equivalent to the product form of the transition.

16 (Markov process). A stochastic process Y1, . . . , YN is a Markov Process if pY1, . . . , Ykq KK Yk, . . . , YN |Yk,
k “ 1, 2, . . . , N . Equivalently,

E pfpYk, . . . , YNq|Y1, . . . , Ykq “ E pfpYk, . . . , YNq|Ykq .
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