Probability 2017

Giovanni Pistone
www.giannidiorestino.it

Mar 9, 2017

Simple functions

Let (S, \mathcal{F}) be a measurable space.

Definition

A measurable real function, $f: S \to \mathbb{R}$, $f^{-1}: \mathcal{B} \to \mathcal{F}$, is simple if it takes a finite number of values; equivalently, it is of the form $f = \sum_{k=1}^m a_k \mathbf{1}_{A_k}$, $a_k \in \mathbb{R}$, $A_k \in \mathcal{F}$, $k = 1, \ldots, m$, $m \in \mathbb{N}$. The algebra with unity of all simple functions is denoted by \mathcal{S} ; the cone of all non-negative simple function is denoted by \mathcal{S}_+ .

- Both S and S_+ are closed for \vee and \wedge ; $f = f^+ f^-$, $f \in S$.
- If f is measurable and non-negative, there exist an incresasing sequence $(f_n)_{n\in\mathbb{N}}$ in S_+ such that $\lim_{n\to\infty} f_n(s) = f(s)$, $s\in S$.
- If f is measurable and bounded, there exist an sequence $(f_n)_{n\in\mathbb{N}}$ in S such that $\lim_{n\to\infty} f_n = f$ uniformely.

Ch. 5 of D. Williams. *Probability with martingales*. Cambridge Mathematical Textbooks. Cambridge University Press, Cambridge, 1991

Integral of a non-negative function

Let (S, \mathcal{F}, μ) be a measure space.

Definition

• If $f \in \mathcal{S}$, $f = \sum_{k=1}^{m} a_k \mathbf{1}_{A_k}$, we define its integral to be

$$\int f \ d\mu = \sum_{k=1}^{m} a_k \mu(A_k) \quad \text{where } 0 \cdot \infty = \infty \cdot 0 = 0$$

• If $f: S \to [0, +\infty]$ is measurable, namely $f \in \mathcal{L}_+$, we define its integral to be

$$\int f \ d\mu = \sup \left\{ \int h \ d\mu \middle| h \in \mathcal{S}_+, h \leq f
ight\}$$

- The integral is linear and monotone on $S^1 = \{ f \in S | \int f^+ d\mu, \int f^- d\mu \leq \infty \}.$
- ullet The integral is convex and monotone on \mathcal{L}_+ .
- If $f \in \mathcal{L}_+$ and $\int f d\mu = 0$, then $\mu \{f > 0\} = 0$

Monotone-Convergence Theorem

Theorem (MON)

let $(f_n)_{n\in\mathbb{N}}$ be a non-decreasing sequence in \mathcal{L}_+ . Then the pointwise limit $f=\lim_{n\to\infty}f_n$ belongs to \mathcal{L}_+ and $\lim_{n\to\infty}\int f_n\ d\mu=\int f\ d\mu$.

- A sequence of simple functions converging to f is always available.
- If $\alpha, \beta \in \mathbb{R}_{>0}$, $f, g \in \mathcal{L}_+$, then ::

$$\int (\alpha f + \beta g) d\mu = \int \alpha f d\mu + \int \beta g d\mu$$

• Exercise: If $\mu(S) = 1$, then $\int f \ d\mu = \int_0^\infty \mu \{f > u\} \ du$.

Proof of MON: Appendix A5 of D. Williams. *Probability with martingales*. Cambridge Mathematical Textbooks. Cambridge University Press, Cambridge, 1991; Bertrand Lods *Lecture Notes*.

Fatou Lemmas

Theorem (FATOU)

Let $(f_n)_{n\in\mathbb{N}}$ be a sequence in \mathcal{L}_+ .

- 1. $\int (\liminf_{n\to\infty} f_n) d\mu \leq \liminf_{n\to\infty} \int f_n d\mu$.
- 2. If, moreover, $f_n \leq g$, $n \in \mathbb{N}$, and $\int g \ d\mu < \infty$, then $\int (\limsup_{n \to \infty} f_n) \ d\mu \geq \limsup_{n \to \infty} \int f_n \ d\mu$.
 - Exercise: Prove 1. by observing that lim sup is the limit of an increasing sequence.
 - Exercise: If $(f_n)_{n\in\mathbb{N}}$ is a decreasing sequence in \mathcal{L}_+ and $\int f_1 \ d\mu < \infty$, then $\int (\lim_{n\to\infty} f_n) \ d\mu = \lim_{n\to\infty} \int f_n \ d\mu$.
 - Exercise: If $(f_n)_{n\in\mathbb{N}}$ is a sequence in \mathcal{L}_+ and $f_n \leq g$, $n \in \mathbb{N}$, $\int g \ d\mu < \infty$, then $\int (\lim_{n\to\infty} f_n) \ d\mu = \lim_{n\to\infty} \int f_n \ d\mu$.

Integrability

Definition

ullet Let \mathcal{L}^1 be the vector space of measurable real functions such that

$$\int |f| \ d\mu = \int f^+ \ d\mu + \int f^- \ d\mu < \infty$$

• Define the integral to be the linear mapping

$$\mathcal{L}^1
i f\mapsto \int f\ d\mu=\int f^+\ d\mu-\int f^-\ d\mu\in\mathbb{R}$$

- Jensen inequality: Let $\Phi \colon \mathbb{R} \to \mathbb{R}$ be convex. Then $\Phi \left(\int f \ d\mu \right) \leq \int \Phi \circ f \ d\mu$.
- Assignment: Revise L¹-convergence and Dominated Convergence Theorem in Ch 5 of D. Williams. *Probability with martingales*.
 Cambridge Mathematical Textbooks. Cambridge University Press, Cambridge, 1991 or Bertrand Lods *Lecture Notes*.

Change of variable formula

Let be given a measure space (S, \mathcal{F}, μ) , a measurable space $(\mathbb{X}, \mathcal{G})$ and a measurable mapping $\phi \colon S \to \mathbb{X}$, $p^{-1} \colon \mathcal{G} \to \mathcal{F}$. Let $\phi_{\#}\mu = \mu \circ \phi^{-1}$ be the push-forward measure.

• If $h \in \mathcal{S}(\mathbb{X},\mathcal{G})$ i.e. $h = \sum_{k=1}^n b_k \mathbf{1}_{B_k}$, $b_k \in \mathbb{R}$, $B_k \in \mathcal{G}$, $k = 1, \ldots, n$. Then

$$\int h \ d\phi_{\#}\mu = \sum_{k=1}^{n} b_{k}\phi_{\#}\mu(B_{k}) = \sum_{k=1}^{n} b_{k}\mu[\phi^{-1}(B_{k})] =$$

$$\sum_{k=1}^{n} b_{k} \int \mathbf{1}_{B_{k}} \circ \phi \ d\mu = \int h \circ \phi \ d\mu$$

- If $f \in \mathcal{L}_+$, then MON implies $\int h \ d\phi_\# \mu = \int h \circ \phi \ d\mu$
- If $f: \mathbb{X} \to \mathbb{R}$ is measurable and $f \circ \phi \in \mathcal{L}^1(S, \mathcal{F}, \mu)$ then $f \in \mathcal{L}^1(\mathbb{X}, \mathcal{G}, \phi_{\#}\mu)$ and $\int h \ d\phi_{\#}\mu = \int h \circ \phi \ d\mu$.

Densities

Let be given a measure space (S, \mathcal{F}, μ) and a measurable non-negative mapping $p \colon S \to \mathbb{R}$ such that $\int p \ d\mu < \infty$. The set function

$$p \cdot \mu \colon \mathcal{F} o \mathbb{R}_{>0}, \quad A \mapsto \int \mathbf{1}_A p \ d\mu$$

is a bounded measure. In fact: $p \cdot \mu(\emptyset) = \int 0 \ d\mu = 0$; given a sequence $(A_n)_{n \in \mathbb{N}}$ of disjoint events, then MON implies

$$\begin{array}{l} \displaystyle p\cdot \mu(\cup_{n\in\mathbb{N}}A_n) = \int \mathbf{1}_{\cup_{n\in\mathbb{N}}A_n}p\ d\mu = \int \sum_{n\in\mathbb{N}}\mathbf{1}_{A_n}\ d\mu = \\ \\ \displaystyle \sum_{n\in\mathbb{N}}\int \mathbf{1}_{A_n}\ d\mu = \sum_{n\in\mathbb{N}}p\cdot \mu(A_n) \end{array}$$

Exercise: If $f: S \to \mathbb{R}$ is measurable and $fp \in \mathcal{L}^1(S, \mathcal{F}, \mu)$, then $f \in \mathcal{L}^1(S, \mathcal{F}, p \cdot \mu)$ and $\int f \ d(p \cdot \mu) = \int fp \ d\mu$. [Hint: try first simple functions, then use MON]

Product measure I

Definition

Given measure spaces $(S_i, \mathcal{F}_i, \mu_i)$, i = 1, ..., n, n = 2, 3, ..., the product measure space is

$$(S, \mathcal{F}, \mu) = \bigotimes_{i=1}^{n} (S_i, \mathcal{F}_i, \mu_i) = (\times_{i=1}^{n} S_i, \bigotimes_{i=1}^{n} \mathcal{F}_i, \bigotimes_{i=1}^{n} \mu_i),$$

where

$$\mathcal{F} = \bigotimes_{i=1}^{n} \mathcal{F}_{i} = \sigma \left\{ \times_{i=1}^{n} A_{i} | A_{i} \in \mathcal{F}_{i}, i = 1, \dots, n \right\}$$

and $\mu = \bigotimes_{i=1}^n \mu_i$ is the unique measure on $(\times_{i=1}^n S_i, \bigotimes_{i=1}^n \mathcal{F}_i)$ such that

$$\mu(\times_{i=1}^n A_i) = \prod_{i=1}^n \mu_i(A_i), \quad A_i \in \mathcal{F}_i, i = 1, \ldots, n.$$

- Let $X_i : S \mapsto S_i$, i = 1, ..., n, be the projections. Then $\bigotimes_{i=1}^{n} \mathcal{F}_i = \sigma \{X_i | i = 1, ..., n\}$.
- Examples: Counting measure on \mathbb{N}^2 , Lebesgue measure on \mathbb{R}^2 , the finite Bernoulli scheme.
- Product measure of probability measures is a probability measure.

Product measure II

Recall all measures are σ -finite. Assume n=2.

Sections

If
$$C \in= \mathcal{F} = \mathcal{F}_1 \otimes \mathcal{F}_2$$
, then for each $x_1 \in S_1$ the set $\{x_2 \in S_2 | (x_1, x_2) \in C\}$ belongs to \mathcal{F}_2 .

Proof.

Let $\mathcal O$ be the family of all subsets of S for which the proposition is true. $\mathcal O$ is a σ -algebra that contains all the measurable rectangles, hence $\mathcal F\subset \mathcal O$.

Partial integration

The mapping $S_1: x_1 \mapsto \mu_2 \{x_2 \in S_2 | (x_1, x_2) \in C\}$ is non-negative and \mathcal{F}_1 -measurable.

Proof.

If $C \in \mathcal{F}$ then the function is well defined. The set of all $C \in \mathcal{F}$ such that the function is measurable contains measurable rectangles, is a π -system, and is a d-system.

Product measure III

Product measure: existence

The set function $\mu \colon \mathcal{F} \ni C \mapsto \int \mu_2 \{x_2 \in S_2 | (x_1, x_2) \in C\} \ \mu_1(dx - 1)$ is a measure such that $\mu(A_1 \times A_2) = \mu_1(A_1)\mu_2(A_2)$ on measurable rectangles. Hence, $\mu = \mu_1 \otimes \mu_2$.

Proof.

The integral exists because the integrand is non-negative. $\mu(\emptyset) = 0$; if $(C_n)_{n \in \mathbb{N}}$ is a sequence in \mathcal{F} of disjoint events, then for all $x_1 \in S_1$ we have

$$\mu_2 \{x_2 \in S_2 | (x_1, x_2) \in \cup_{n \in \mathbb{N}} C_n \} = \mu_2 (\cup_{n \in \mathbb{N}} \{x_2 \in S_2 | (x_1, x_2) \in C_n \}) = \sum_{n \in \mathbb{N}} \mu_2 \{x_2 \in S_2 | (x_1, x_2) \in C_n \}$$

MON implies

$$\mu(\cup_{n\in\mathbb{N}}C_n) = \int \sum_{n\in\mathbb{N}} \mu_2 \{x_2 \in S_2 | (x_1, x_2) \in C_n\} \ \mu_1(dx_1) = \sum_{n\in\mathbb{N}} \int \mu_2 \{x_2 \in S_2 | (x_1, x_2) \in C_n\} \ \mu_1(dx_1) = \sum_{n\in\mathbb{N}} \mu(C_n)$$

Product measure IV

• Consider n = 3. The product measure space

$$\otimes_{i=1}^{3}(S_{i},\mathcal{F}_{i},\mu_{i})=(\times_{i=1}^{n}S_{i},\otimes_{i=1}^{n}\mathcal{F}_{i},\otimes_{i=1}^{n}\mu_{i})$$

is identified with

$$(S_1 \times S_2, \mathcal{F}_1 \otimes \mathcal{F}_2, \mu_1 \otimes \mu_2) \otimes (S_3, \mathcal{F}_3, (\mu_1 \otimes \mu_2) \otimes \mu_3)$$

One has to check that

$$(\mathcal{F}_1 \otimes \mathcal{F}_2) \otimes \mathcal{F}_3 = \mathcal{F}_1 \otimes \mathcal{F}_2 \otimes \mathcal{F}_3$$

• The $n = \infty$ case requires Charateodory. See the Bernoulli scheme example.

Fubini theorem I

Section

Let $f: S_1 \times S_2 \to reals$ be $\mathcal{F}_1 \otimes \mathcal{F}_2$ measurable. For all $x_1 \in S_1$ the function $f_{x_1}: x_2 \mapsto f(x_1, x_2)$ is \mathcal{F}_2 -measurable.

Proof.

For each $y \in \mathbb{R}$, consider the level set

$$C = \{(x_1, x_2) | f(x_1, x_2) \le y\} \in \mathcal{F}_1 \otimes \mathcal{F}_2$$
. The set $\{(x_2) | f(x_1) \le y\}$ is the x_1 -section of C .

Theorem (Non-negative integrand)

Let $f: S_1 \times S_2 \to \mathbb{R}$ be $\mathcal{F}_1 \otimes \mathcal{F}_2$ -measurable and non-negative. Then the mapping $S_1 \ni x_1 \mapsto \int f(x_1, x_2) \ \mu_2(dx_2)$ is \mathcal{F}_1 -measurable and

$$\int f \ d\mu_1 \otimes \mu_2 = \int \left(\int f(x_1, x_2) \ \mu_2(dx_2) \right) \ \mu_1(dx_1)$$

Fubini theorem II

Theorem (Integrable integrand)

Let $f: S_1 \times S_2 \to \mathbb{R}$ be $\mu_1 \otimes \mu_2$ -integrable. Then the mapping $S_1 \ni x_1 \mapsto \int f(x_1, x_2) \ \mu_2(dx_2)$ is μ_1 -integrable and

$$\int f d\mu_1 \otimes \mu_2 = \int \left(\int f(x_1, x_2) \ \mu_2(dx_2) \right) \ \mu_1(dx_1)$$

Proof: Non-negative integrand.

Choose an increasing sequence of simple non-negative functions converging to f and use MON.

Proof: Integrable integrand.

Decompose $f = f^+ - f^-$ and use the previous form of the theorem.

Independence

Definition

Let $(\Omega, \mathcal{F}, \mu)$ be a probability space.

- 1. The sub- σ -algebras $\mathcal{F}_1, \ldots, \mathcal{F}_n$ are independent if $A_i \in \mathcal{F}_i$, $i = 1, \ldots, n$, implies $\mu(A_1 \times \cdots \times A_n) = \mu(A_1) \cdots \mu(A_n)$.
- 2. The random variables $X_i: \Omega \to S_i, X_i^{-1}: \mathcal{G}_i \to \mathcal{F}, i = 1, \dots, n$, are independent, if

$$(X_1,\ldots,X_n)_{\#}\mu=(X_1)_{\#}\mu\otimes\cdots\otimes(X_n)_{\#}\mu$$

• If $\mathcal{F}_i = \sigma(X_i)$, the 1. and 2. are equivalent.