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Malliavin operators in the one-dimensional case

As anticipated in the Introduction, in order to develop the main tools for the
normal approximations of the laws of random variables, we need to define
and exploit a modicum of Malliavin-type operators — such as the deriva-
tive, divergence and Ornstein-Uhlenbeck operators. These objects act on
random elements that are functionals of some Gaussian field, and will be fully
described in Chapter 2. The aim of this chapter is to introduce the reader
into the realm of Malliavin operators, by focusing on their one-dimensional
counterparts. In particular, in what follows we are going to define derivative,
divergence and Ornstein~Uhlenbeck operators acting on random variables of
the type F = f(N), where f is a deterministic function and N ~ .4°(0, 1)
has a standard Gaussian distribution. As we shall see below, one-dimensional
Malliavin operators basically coincide with familiar objects of functional
analysis. As such, one can describe their properties without any major tech-
nical difficulties. Many computations detailed below are further applied in
Chapter 3, where we provide a thorough discussion of Stein’s method for
one-dimensional normal approximations.

For the rest of this chapter, every random object is defined on an appropriate
probability space (£2, %, P). The symbols ‘E” and “Var’ denote, respectively,
the expectation and the variance associated with P.

1.1 Derivative operators

Let us consider the probability space (R, Z(R), y). where y stands for the
standard Gaussian probability measure, that is,

y(A) = 2y,
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for every Borel set A. A random variable N with distribution y is called stan-
dard Gaussian; equivalently, we write N ~ (0, 1). We start with a simple

(but crucial) statement.
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Lemma 1.1.1 Let f : R — R be an absolutely continuous function such that
f e LY(y). Then x v xf(x) € L\(y) and

f xf )y (x) = / F @y (). (1.L1)
R R

Proof Since f}R Ix|dy (x) < oo, we can assume that f(0) = 0 without loss
of generality. We first prove that the mapping x + xf (x) is in L'(y). Indeed,

oo 1 - ]
/_oo @ xldyx) = Té__;/ /0 £y
1 0 0 7

=< _«/2_—71: o (/x lf’(y)(dy) (—x)e~ ¥ 12gx

T f N ( / A )!dV> 24
Vax Jo \Jp 7 EY)TE e
- f L/ Oldy () < oo,

—00

2
Ix|e ™ dx

where the last equality follows from a standard application of the Fubini the-

orem. To show relation (1.1.1), one can apply once again the Fubini theorem
and infer that

o0 100 >
[_wf(x)XdV(x)= —Eim(/x f’(y)dy) (—x)e™* 2gx

1 o X , s o) )
= /0 (/0 f(y)dy)xe Px= f_ 00
J

Remark 1.1.2 Due to the fact that the assumptions in Lemma 1.1.1 are

minimal, we proved relation (1.1.1) by using a Fubini argument instead of

a (slightly more natural) integration by parts. Observe that one cannot remove

the “absolutely continuous’ assumption on f. For instance, if f = 110,00y, then
60 1 ’

[o xfdy (x) = 5= Whereas [0, Fledy(x) = 0.

We record a useful consequence of Lemma 1.1.1, consisting in a characteri-
zation of the moments of y, which we denote by

mu(y) = / x"dy(x), n=>0. (1.1.2)
R
Corollary 1.1.3  The sequence (m, () n>0 satisfies the induction relation

Mp1(¥) =n X mu_1(y), n=0. (1.1.3)
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In particular, one has m,(y) = 0 ifn is odd, and
ma(y) = nt/ @@/ =@ —-Dit=1-3-5-...-(n—1) if n is even.

Proof To obtain the induction relation (1.1.3), just apply (1.1.1) to the func-
tion f(x) = x",n = 0. The explicit value of m, () is again computed by an
induction argument. O

In what follows, we will denote by S the set of C*°-functions f:R—>R
such that f and all its derivatives have at most polynomial growth. We call any
element of S a smooth function.

Remark 1.1.4 The relevance of smooth functions is explained by the fact
that the operators introduced below are all defined on domains that can be
obtained as the closure of & with respect to an appropriate norm. We will see
in the next chapter that an analogous role is played by the collection of the
smooth functionals of a general Gaussian field. In the one-dimensional case,
the reason for the success of this ‘approximation procedure’ is nested in the
following statement.

Proposition 1.1.5  The monomials {x* : n = 0,1,2, ...} generate a dense
subspace of LI (y) for every q € (1, 00). In particulay, for any q € [1, 00) the
space S is a dense subset of Li(y).

Proof Elementary Hahn—Banach theory (see Proposition E.1.3) implies that
it is sufficient to show that, for every n € (1, oo, if g € L"(y) is such that
jR g(x)x"dy(x) = 0 for every integer k > 0, then g = 0 almost everywhere.
So, let g € L(y) satisfy [R g(x)xkdy(x) = 0 forevery k > 0,and fixt € R.
We have, forall x € R,
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so that, by dominated com'ergence,1 we have

n Y 4
Lg(x)e"“‘dy(x)=llgrr302%i~?—[,§g(X>xkdy(x>=0.
- k=0 U8

! Indeed, by the Holder inequality and by using the convention m——cz—_‘ = 1 to deal with the case
7 = 0o, one has that

oc L ox2 o _
[ LGl ™1™ T dx = Var f leledy ) <V lgl i le  La-nmg, <00
o —00
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We have.therefore proved that fR g(x)exp(itx)dy(x) = O forevery ¢t € R,
from which it follows immediately (by injectivity of the Fourier transform)
that g = O almost everywhere. O

I.Qix‘ f e S;forevery p = 1,2,..., we write f (P) or, equivalently, D? f
to indicate the pth derivative of f. Note that the mapping f +— DP f is an
operator from S into itself. We now prove that this operator is closable.

Lemma 1.1.6  The operator DP : §°C L9(y) — Li(y) is closable for every
g € [1, co) and every integer p > 1.

Proof We only consider the case g > 1; due to the duality LY(y)/ L),
the case ¢ = 1 requires some specific argument and is left to the reader. Let
(fn) be a sequence of S such that: (i) f, converges to zero in L7 (y); (i) f,fm
converge to some 77 in L9(y). We have to prove that » is equal to zero. Let
g € S, and define §7g € S iteratively by 8"g = 818" "1g,r =2,..., p, where
8lg(x) = 8g(x) = xg(x) — g’ (x) (note that this notation is consistent with the
content of Section 1.2, where the operator § will be fully characterized). We
have, using Lemma 1.1.1 several times,

/ n()g()dy () = lim [ £ (g (0dy ()
R =0 R

= 1im | 7Y@ (xgtx) — ¢'@))dy )

—
n OOR

n—>C0o

= Jim | £ Y (x)8g(x)dy (x)

= lim
n—>0

f ()87 g(x)dy (x).
R

Hence, since f;, — 0in L9(y) and §”g belongsto S C Lf:T (y), we deduce,
by applying the Holder inequality, that f@ n(x)g(x)dy(x) = 0. Since it is
true for any ¢ € &, we deduce from Proposition 1.1.5 that n = 0 almost
everywhere, and the proof of the lemma is complete. 0

Fix g € [1, 00) and an integer p > 1. We set D79 to be the closure of &
with respect to the norm

T =( [R L ledy () + j@ My () + ..

t/q
+ fp | P (X)l"dy(x)> .
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In other words, a function f is an element of D79 if and only if there exists a
sequence (fn)n>1 C S such that (as n — 00): (i) fn converges to f in LI(y);

and (ii) forevery j = 1, ..., p, f,,(J Visa Cauchy sequence in L7(y ). For such
an f, one defines

FU = D/ f = lim D/ f, = lim fn(j), (1.1.4)
n—=>o0 n—>00
where j =1, ..., p, and the limit is in the sense of LI(y). Observe that
DPIte c PPH™E - iy > 0, Ve > 0. (1.1.5)

We write D°7 = 1), DP9,

Remark 1.1.7 Equivalently, DP¢ is the Banach space of all functions in
L9(y) whose derivatives up to the order p in the sense of distributions also
belong to L9(y) — see, for example, Meyers and Serrin [78].

Definition 1.1.8 For p = 1,2, ..., the mapping
DP :DPY — LI(y): f > DPF, (1.1.6)

as defined in (1.1.4), is called the pth derivative operator (associated with
the L9(y) norm). Note that, for every g # q’, the operators D? : DP9 —
Li(y) and DP : DP9 — Lq/(y) coincide when acting on the intersection
DP4 N DP9’ When p = 1, we will often write D instead of D!.

Since L?(y) is a Hilbert space, the case g = 2 is very important,. In the next
section, we characterize the adjoint of the operator D? : D2 — L2(y).

1.2 Divergences

Definition 1.2.1 We denote by Dom 87 the subset of L2(y) composed of
those functions g such that there exists ¢ > 0 satisfying the property that, for
all f € & (or, equivalently, for all f € DP:2),

<c // FAx)dy (x). (1.2.1)
R

Fix ¢ € Domé”. Since condition (1.2.1) holds, the linear operator f
fR FP (x)g(x)dy (x) is continuous from S, equipped with the L2(y)-
norm, into R. Thus, we can extend this operator to a linear operator from
L*(y) into R. By the Riesz representation theorem, there exists a unique
element in L2(y), denoted by 8Pg, such that JIR FP X ex)dy(x) =
Jr F®)8Pg(x)dy (x) forall f € S.

1 fR FP @)y (x)

R R L R e

Definition 1.2.2 Fix an integer p > 1. The pth divergence operator 87 is
defined as follows. If g € Dom 87, then 87 ¢g is the unique element of L2(y)
characterized by the following duality formula: for all f € S (or, equivalently,
forall f € DP?),

f FP ) g)dy (x) = /R F(x)8Pg(x)dy (x). (1.2.2)
R -

When p = 1, we shall often write § instead of st

Remark 1.2.3 Taking f to be equal to a constant in (1.2.2), we deduce that,
for every p > 1 and every g € Dom §?,

f 8P g(x)dy (x) = 0. (1.2.3)

S

Notice that the operator 8 is closed (being the adjoint of D?). Also,
8Pg=8(8"""g) =8"""(89) (1.2.4)

for every g € Dom 8. In particular, the first equality in (1.2.4) implies that, if
g € Dom 87, then 87~ 1g € Dom §, whereas from the second equality we infer
that, if g € Dom 8”7, then §g € Dom §p—l,

Exercise 1.2.4 Prove the two equalities in (1.2.4).

For every f, g € S, we can write, by virtue of Lemma 1.1.1,

ff’(X)g(X)dy(X)=/x‘f(x)g(X)dy(x)—ﬁf(x)g'(x)dy(.X). (1.2.5)
R R R

Relation (1.2.5) implies that § € Domé and, for g € S, that §g(x) = xg(x) —
g'(x). By approximation, we deduce that DH? ¢ Dom$, and also that the
previous formula for 8g continues to hold when g € D!-2, thatis, §g = G —Dg
for every g € D2, where G(x) = xg(x). More generally, we can prove that
DP2 ¢ Domé” forany p > 1.

1.3 Ornstein—Uhlenbeck operators

Definition 1.3.1 The Orpstein-Uhlenbeck semigroup, written (Pr);>o. is
defined as follows. For f € Sand ¢ > 0,

P, f(x) = / fle'x++1—eHy)dy(y), xeR (1.3.1)
R
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The semigroup characterization is proved in Proposition 1.3.3. An explicit
connection with Ornstein~Uhlenbeck stochastic processes is provided in
Exercise 1.7.4.

Plainly, Py f(x) = f(x). By using the fact that f is an element of S and by
dominated convergence, it is immediate that Pn, F&x) = Mmoo P f(x) =
fR JF(»dy(y). On the other hand, by applying the Jensen inequality to the
right-hand side of (1.3.1), we infer that, for every g € {1, c0),

q
A P f () dy (x) = /R L Fle~x + V1= e2ydy ()| dye)
i
< [Q e x V1= e By ey ()dy ()

=/[f(X)lqu(X). . (132
R

The last equality in (1.3.2) follows from the well-known (and easily checked
using the characteristic function) fact that, if N, N’ are two independent stan-
dard Gaussian random variables, then e /N + +/1 — e~ 2 N’ is also standard
Gaussian.

The relations displayed in (1.3.2), together with Proposition 1.1.3, show that
the expression on the right-hand side of (1.3.1) is indeed well defined for fe
L9(y), g = 1. Moreover, a contraction property holds.

Proposition 1.3.2  For everyt = 0 and every g € [1, 00), P extends to a
linear contraction operator on L4 (y).

As anticipated, the fundamental property of the class ( Pisoisthatitisa
semigroup of operators.

Proposition 1.3.3  Foranys,t > 0, we have P, Py = Prog on L' ().

Proof Forall f € L'(y), we can write

PP f (x) = ﬁy ™t eV - e 2y 4 V1 = e )y (y)dy ()

N J[a FE T x4V =2 2y)dy () = Py f(x),

where the second inequality follows from the easily verified fact that,
if N, N’ are two independent standard Gaussian random variables, then
e /1 —e 2N +/1— e N and /1 — e~ 26+ N have the same law. [

The following result shows that P; and D can be interchanged on D2,

Proposition 1.3.4 Let f € D'2 andt > 0. Then P, f e DY and DP, f=
e—t P[ Df

1.3 Ornstein—-Uhlenbeck operators 11

Proof Suppose that f € S. Then, for any x € R,
DP f(x)=e"" / F e x+vV1—e2y)dy(y) = e P, f'(x) = e PDf (x).
R

The case of a general f follows from an approximation argument, as well as
from the contraction property stated in Proposition 1.3.2. (N

Now denote by L = (%l r=0Pl the infinitesimal generator of (Pr)i=0 on
L?(y), and by Dom L its domain.

Remark 1.3.5 We recall that Dom L is defined as the collection of those
f € L%(y) such that the expression P ”";;f converges in L?(y), as & goes to
Zero.

On & one has that, for any ¢ > 0,

d Py — P, Py, —Id Py —1d
P = lim DT im pt__L_,,i = P, lim th—14a
dt h—0 h h—0 h h—0 h
d
= Py — Py = P L,
tdh o h t

and, similarly, ;f,—i—P, = LP;. On the other hand, for f € § and x € R, we can
write, by differentiating with respect to ¢ in (1.3.1) (note that the interchanging
of differentiation and integration is justified by the fact that f is smooth),

-2
e 2t

f_{ Y e —f oy 1. 2 , P,
dthJ‘(A) = —xe A:gf (e x+v1—e 2y)dy(y) + Ny
j(% Fe™x+V1—e 2yyydy(y)
= e J[ e+ 1= e ydy(y) + e
R
/ e x+ V1 —e2yydy(y),

where we used Lemma 1.1.1 to get the last inequality. In particular, by
specializing the previous calculations to t = 0 we infer that

Lf(x) = —xf'(x) + f"(x). (1.3.3)
This fact is reformulated in the next statement.
Proposition 1.3.6 Forany f € S, we have Lf = —5Df.

The seemingly innocuous Proposition 1.3.6 is indeed quite powerful. As
an illustration, we now use it in order to prove an important result about
concentration of Gaussian random variables, known as Poincaré inequality.



Proposition 1.3.7 (Poincaré inequality) Let N ~ .40, 1) and f e DL2,
Then

Var[ f(N)] < ELf* (V)] (13.4)
Proof By an approximation argument, we may assume without loss of gener-

ality that f € S. Since we are now dealing with a function in S, we can freely
interchange derivatives and integrals, and write

Var[ f(N)] = ELf (N)(f(N) = E[f (N)D] = E[F (N} Pof(N) — Poo f(N))]
o d
= ~/0 E[f(N)E;sz(N)]dl

=/ E[f(N)SDP, f(N)ldt (using &P, = LP, = —8DP,)

0

= / E[f'(N) DP, f(N)ldt (by the duality formula (1.2.2))
0

= f e"E[f(N) P, f/(N))dt (by Proposition 1.3.4)
0

(o)
< f e"'\/E[fQ(N)]\/E[(P, FH%2(N)1dt  (by Cauchy—Schwarz)
0
[o0}
=< E[f’Z(N)]f e™'dt (by Proposition 1.3.2)
0
= E[f*(M)],
yielding the desired conclusion. O

By using their definitions, one can immediately prove that § and D enjoy
the following ‘Heisenberg commutativity relationship’:

Proposition 1.3.8 Forevery f € S, (D§ —8D) f = f.

Exercise 1.3.9 Combine Proposition 1.3.8 with an induction argument to
prove that, for any integer p > 2,

(D8P —8PDYf = psP~' f forall f e S. (13.5)

See also Proposition 2.6.1.

In the subsequent sections, we present three applications of the theory devel-
oped above. In Section 1.4 we define and characterize an orthogonal basis of
L%(y), known as the class of Hermite polynomials. Section 1.5 deals with
decompositions of variances. Section 1.6 provides some basic examples of
normal approximations for the law of random variables of the type F = fN).

1.4 First application: Hermite polynomials

Definition 1.4.1 Let p > 0 be an integer. We define the pth Hermite poly-
nomial as Hy = 1 and H, =671, p > 1. Here, 1 is a shorthand notation for
the function that is identically one, which is of course an element of Dom 87
for every p. For instance, Hy(x) = x, Hy(x) = x2 — 1, H3(x) = x3 — 3x, and
s0 on. We shall also use the convention that H_; (x) = 0.

The main properties of Hermite polynomials are gathered together in the
next statement (which is one of the staples of the entire book):
Proposition 1.4.2 (i) Forany p >0, we have H, = pH,_1, LH,=—pH,
and PH, = e P"H, t > 0.
() Foranyp =20, Hppi(x) = xHp(x) —~ pHp_1(x).
(iii) Forany p,q > 0,

1 ;" —
A{ Hp(x>Hq(x)dy<x>={p' Yp=4q

0 otherwise.

(iv) The family {—i—H Pl P> O} is an orthonormal basis of Lz()/)‘

~p!
) If f e D®2 then f = > %0 -lj‘, (Jg FP)dy () Hy in L2 (y).
(vi) Forall ¢ € R, we have ¢**=¢*/2 — ;O:O %Hp (x) in L3(y).

(vii) (Rodrigues’s formula) For any p > 1, Hpy(x) = (-—1)pex2/2;1‘¥,76““x2/2.

(viii) Forevery p > 0 and every real x, Hp(=x) = (=1)P H,(x).

Proof (1) By the definition of H,,, we have H [’, = D§P1. Hence, by apply-
ing the result of Exercise 1.3.9, we get H[’J = psP~11+8PD] = pHp.
We deduce that LH, = ~8DH, = —BHI’, = —pSH, | = —pH,.
Fix x € R, and define y, : Ry — R by y, (1) = P H,(x). We have
yx(0) = PoH,(x) = Hy(x) and, fort > 0,

d

!
) {f) = ——
() dt|,

FiHp(x) = PLH,(x) = —pP Hy(x) = —py,(£).
=0
Hence y, () = e™P' Hp,(x), that is, P, H), = e~ "' Hp.

(i) We can take p > 1. We have that Hpy = §71!1 = 8571 = §Hp. It
follows that, by the definition of §, H pi(x) = xHy(x) — H [’J (x). Since
H[’) (x) = pHp_1(x) by part (i), we deduce the conclusion.
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(iil) The case p > g = 0 is a direct consequence of (1.2.3). If p > g > 1,

one can write
j{QHp(X)Hq(X)dV(X)=AH,)(X)341(x)dV(X)
It

= [R H,(x)897 ' 1(x)dy (x) (by the duality
formula (1.2.2))

=prHp~l(x)Hq~l(x)dV(x) (by ().

Hence, the desired conclusion is proved by induction.

(iv) By the previous point, the family { J_H tp=> O} is orthonormal in

L?(y). On the other hand, it is simple to prove (e.g. by induction) that,
forany p > 0, the polynomial H), has degree p. Hence, the claim in this
part is equivalent to saying that the monomials {x? : p = 0,1,2,...}
generate a dense subspace of L?(y). The conclusion is now obtained by
using Proposition 1.1.5 in the case ¢ = 2.

(v) By part (iv), for any f € Lz(y),
f= Z ( | s, (x)dy(x)) H,.

If f € D2 then, by applying (1.2.2) repeatedly, we can write

jgf(x)Hb(x)dy(x}=£Rf(x)8”l(x)dy(x)=/ FP@)dy ).
R B

Hence, in this case, we also have

oo

F=y + (/ ‘f(”)(x)dy(x))H

p=0 P
as required.

(vi) If we choose f(x) = e in the previous identity for f, we get

[ee]

0
cx —x2/2 2 c?
e = = pt (\/—./ = dx) Hp(x) =e° /2 E ;THp(x)a

p=0

which is the desired formula.

A . DT URRLE bl‘/‘/bbvt.ibuvlu. [ e e LR
(vil) We have
o0
2 2 2 2 cP dar 2
Pl /2 & /26—(" )2 &~ /Z‘Z — % : e (x—c)=/2
s pl o dePl g

2/22( Drel 47 —p

p! dxP p¢

By comparing with the formula in (vi), we deduce the conclusion.

(viii) Since Hp(x) = 1 and Hj(x) = x, the conclusion is trivially true for
p =0, 1. Using part (ii), we deduce the desired result by an induction
argument. |

1.5 Second application: variance expansions

We will use the previous results in order to write two (infinite) series represen-
tations of the variance of f(N), whenever N ~ .47(0, 1) and F:R—=Ris
sufficiently regular.

Proposition 1.5.1 Let N ~ 4 (0, 1) and f € D°?. Then

o0

1
Var[f(N)] =) —ELf™ (NI (15.1)-

n=1

If, moreover, E[f"™(N)?)/nt = Oasn — ccand f € S, we also have

(__ )n +1 ‘
Varl f (V)] = Z ——EfM WY1 (152)
n=1
(The convergence of the infinite series in (1.5.1) and (I .5.2) is part of the
conclusion.)

Proof The proof of (1.5.1) is easy: it suffices indeed to compute the L2(y)-
norm on both sides of the formula appearing in part (v) of Proposition 1.4.2 —
see also part (iv) therein.

For the proof of (1.5.2), let us consider the application

t > g(t) = E[(Piogyyn /(N 0<r <1

We have g(1) = E[f 2(N)]. Moreover, g can be extended to a continuous
function on the interval [0, 1] by setting g(0) = E[f(N y)?. In particular,
Var[ f(N)] = g(1) — g(0). For ¢ € (0, 1), let us compute g (1) (note that we
can interchange derivatives and expectations, due to the assumptions on f):
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1
o’ [
g = p E[Plog(l/ﬁ)f(N) X LP]gg(l/ﬁ)f(»N)]
1
= " E[Plog(l/ﬁ)f(N) % 6DP10g(l/ﬁ)f(N)] (by Proposition 1.3.6)

1
= - E[(DPlog(l/ﬁ) f)z(N)] (by the duality formula (1.2.2))
= E[(Plog(i/ﬁ) f’)z(N)] (by Proposition 1.3.4).
By induction, we easily infer that, foralln > 1 and s € 0, D,
g (0) = E(Poge, i P,

and, in particular, g(”) can be extended to a continuous function on [0, 1] by
setting

g0 = E[fPWNP and g™ (1) = E[F™ (N,
Taylor’s formula yields, for any integer m > 1,

(_1)n+1
n!

g0 —g)+Y

n==]

gW M) = —
m:

1
1 f g(m+1)(l‘)tmdt.
0

By Proposition 1.3.2, we have that, for any t € (0,1),0 < g(””'”(t) <
E[f+D(N)2]. Therefore,

0< L [ gonnymg, < EEHDON
m! Jo - (m+ 1!
and the desired formula (1.5.2) follows. To finish, let us stress that we could
recover (1.5.1) by using this time the expansion g(1) = g(0) + Yonoy g(’:l)'(O).
(Such a series representation is valid because g is absolutely monotone; éee,
for example, Feller [38, p. 233].) |

— 0 asm — oo,

1.6 Third application: second-order Poincaré inequalities

We will now take a first step towards the combination of Stein’s method
and Malliavin calculus. Let F and N denote two integrable random variables
defined on the probability space ($2, &, P). The difference between the laws
of F and N can be assessed by means of the so-called Wasserstein distance:
dw(F,N)= sup |E[h(F)]— E[L(N)]|.
heLlip(l)
Here, Lip(K) stands for the set of functions 4 : R — R that are Lipschitz with
constant K > 0, that is, satisfying |h(x) — h(y)] < K|x — y| for all x, yeR.

Lt LTI W /LU b SUG VTR U M0 T & W orhG it sl ey -

When N ~ A4(0, 1), there exists a remarkable result by Stein (which we
will prove and discuss in full detail in Section 3.5) which states that

dw(F.N)y<  sup _ |E[F¢(F)] - El@'(P)]]. (1.6.1)
$eCiNLip(v/2/n)

In anticipation of the more general analysis that we will perform later on,
we shall now study the case of F having the specific form F = f(N), for
N ~ A0, 1) and f : R — R sufficiently regular. In particular, we shall prove
a so-called second-order Poincaré inequality. The rationale linking Proposi-
tion 1.6.1 and the “first-order’ Poincaré inequality stated in Proposition 1.3.7
goes as follows. Formula (1.3.4) implies that a random variable of the type
f(N) is concentrated around its mean whenever f” is small, while inequality
(1.6.2) roughly states that, whenever f” is small compared to f', then f(N)
has approximately a Gaussian distribution.

Proposition 1.6.1 (Second-order Poincaré inequality) Let N ~ A47(0, 1)
and f € D**. Assume also that E[ f(N)] = 0 and E[f2(N)] = 1. Then

dw(f(N), N) < —% (E [f”“(N)Dl/4 (E [j"“*(N)])w. (1.6.2)

Proof Assume first that f € S. By using the smoothness of f in order to
interchange derivatives and integrals and by reasoning as in Proposition 1.3.7,
we can write, for any C! function ¢ : R — R with bounded derivative:

ELF (NS (F(N))] = EL(Pof (N) — Poo f(NDG(F (N
o0 d

- [ E LT Pff(N)f/)(f(N))} dr
0 t

- fo E[SDP, f(N)$(f (N)]dt
_ /0 e ELP, £/ () (F (N)) £/ (N))dz

—E [qb’(f(N))f’(N) /0 e"Ptf’(N)dr] .

In particular, for ¢ (x) = x, we obtain

1= E[f*(N)]=E [f'(N)/O e”'P:f'(N)dt}-
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Therefore, for any ¢ € C' N Lip(+/2/7) and fes,
|ELF (NS (F(N)] — E[¢'(f (V)]

= !E [qb’(f(N)) (f’(N)/ e P, f(N)dt — 1)”
5\/5 (N)f e P f/(N)dt — 1[

fJVar f’(N)f e P f! (N)dt} (1.6.3)

To go further, we apply the Poincaré inequality (1.3.4) and then the triangle
inequality to deduce that

oo B o) 2
Var[f’(N)[O e—’P,f’(N)dt:I < |E (f’/ e"P,f’dl‘) (N)J
0

\

- ~ 3
< |E|f(N) (/ 8“’Prf’df> (N)]
\ R 0

— oo 2
+ |E| e ( | e“z’f’:f”df) <N>J-
\ B 0

(1.6.4)

Applying now the Cauchy-Schwarz inequality, Jensen inequality and the
contraction property (see Proposition 1.3.2) for p = 4 yields

o] 2
E[f”z(N) ( /0 e"sz’df) <N>} < E L]y E LA,

Similarly,

=} 2
E [fzz(N) (/(; B—ZIP;f”d[) (N)] < ZL{\/E [f”4(N)]\/E [f’4(N)].

By exploiting these two inequalities in order to bound the right-hand side of
(1.6.4) and by virtue of (1.6.3), we obtain that

1/4 1/4
E N N — _{ 174 14
[ELF @0t @~ £l 0] < —= (€ [ an])"™ ([ ran]) ™,
(1.6.5)
forany ¢ € C' NLip(/2/7) and J € S. By approximation, inequality (1.6.5)

continues to hold when f is in D% Finally, the desired inequality (1.6.2)
follows by plugging (1.6.5) into Stein’s bound (1.6.1). ]

1o/ LACTULED 1z

Note that Proposition 1.6.1 will be significantly generalized in Theorem
5.3.3; see also Exercise 5.3.4.

1.7 Exercises

1.7.1 Let p,qg = 1 be two integers. Show the product formula for Hermite
polynomials:

PAG

P
HyH, = Zr!(r) (?) Hyig-ar-

r==0
(Hint: Use formula (v) of Proposition {.4.2.)
1.7.2 let p > 1 be an integer.

1. Show that H,(0) = 0 if p is odd and H,(0) = =00 if p is
cven.

(Hint: Use Proposition 1.4.2(vi).)
2. Deduce that:

Lp/2} k
pi(—=1) 2
Hp(x) = E v S
Iy — 12k
= ki p — 2k)12

{(Hint: Use H [’, = pH,_; and proceed by induction.)
1.7.3 let f € Sand x € R. Show that

f e P, f(x)dt ——‘x:/‘ e P fl(x)dt = f(x)—f FMdy(y).
0 0 R

(Hint: Use P, =LP =..)
1.7.4 (Omstem—«Uhienbeck processes) Let B = (B;);>¢o be a Brownian
motion. Consider the linear stochastic differential equation

dX{ =~2dB, — Xidr, 120, Xi=xeR (1.7.1)

The solution of (1.7.1) is called an Ornstein—-Uhlenbeck stochastic
process.

1. For any x € R, show that the solution to (1.7.1) is given by
I
X;‘ = x4 «/if e_(’—‘”st, r>0.
0

2. If f € Sandx € R, show that P, f(x) = E[ f(X])].
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175 LetN ~ A0, 1) and f € S.If 3 E[f™(N)*] — Oasn — oo,
show that

o0

1 A
Varlf ()] = 3 5 (ELF NP + (= D" ELFD ()?).
n=1
(Hint: Expand g(1/2) around 0 and 1, with g the function introduced
in the proof of Proposition 1.5.1.)
176 Let f,g € D2 andlet N, N ~ #(0, 1) be jointly Gaussian, with
covariance p.

1. Prove that Cov[ f(N), g(N)] = E[f(N)(Pin(1/078(N)—Poog(N))].

(Hint: Use the fact that (N, N) and (N, pN + /1 — p2N) have
the same lawwwhenever N, N ~ A0, 1) are independent and
p = CoviN, N1

2. Deduce that |Cov[f(N), g(N)]] < |CoviN, NIIVELF2(N)]
VE[g(N)].

2
1.7.7 Fore > 0,let pe(x) = \/ilﬂe“'i? be the heat kernel with variance ¢.

1. Show that [ pe(x — u)dy (x) = piie(u) forall u € R.

2.For any n > 0 and u € R, show that pPw) =
(=D pe(u) Hy(u/ /2).
(Hint: Use formula (vi) of Proposition 1.4.2.)

3. Deduce, forany n > O and u € R, that

Ji PP —wdy @) = (L + &) piis ) Hy(u/ VT T 5).
i

4. Finally, prove the following identity in L(y):

. 1 i (—=1)" o
Pe = r-——-——————zn(l ¥ 8) ~ n!(2n)!2"(1 + 8)” 2n-

(Hint: Use Proposition 1.4.2(v).)

1.8 Bibliographic comments

Sections 1.1-1.4 are strongly inspired by the first chapter in Malliavin’s
monograph [70]. The Poincaré inequality (1.3.4) was first proved by Nash
in [80], and then rediscovered by Chernoff in [24] (both proofs use Hermite
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polynomials). A general, infinite-dimensional version of Poincaré inequal-
ity is proved by Houdré and Pérez-Abreu in [51]. The variance expansions
presented in Section 1.5 are one-dimensional versions of the results proved by
Houdré and Kagan [50]. An excellent reference for Stein’s method is [22],
by Chen, Goldstein and Shao. The reader is also referred to Stein’s origi-
nal paper [135] and monograph [136] — see Chapter 3 for more details. The
concept of a second-order Poincaré inequality such as (1.6.2) first appeared
in Chatterjee [20], in connection with normal fluctuations of eigenvalues of
Gausssian-subordinated random matrices. Infinite-dimensional second-order
Poincaré inequalities are proved in Nourdin ef al. [93), building on the findings
by Nourdin and Peccati [88]. In particular, [88] was the first reference to point
out an explicit connection between Stein’s method and Malliavin calculus.



