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Abstract Limits of densities belonging to an exponential family appear in many
applications, e.g. Gibbs models in Statistical Physics, relaxed combinatorial opti-
mization, coding theory, critical likelihood computations, Bayes priors with singu-
lar support, random generation of factorial designs. We discuss the problem from
the methodological point of view in the case of a finite state space. We prove two
characterizations of the limit distributions, both based on a suitable description of
the marginal polytope (convex hull of canonical statistics’ values). First, the set of
limit densities is equal to the set of conditional densities given a face of the marginal
polytope. Second, in the lattice case there exists a parametric presentation, in mono-
mial form, of the closure of the statistical model.
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1 Background

We consider the exponential family defined by the family of densities

p(x;θ) = exp

(
m

∑
j=1

θ jTj(x)−ψ(θ)

)
, θ ∈ Rm, (1)

Luigi Malagò
DEI Politecnico di Milano, Italy. e-mail: malago@elet.polimi.it

Giovanni Pistone
DIMAT Politecnico di Torino and Collegio Carlo Alberto, Moncalieri, Italy. e-mail: giovanni.
pistone@gmail.com

1
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on a finite state space (X ,µ) with n = #X points and reference measure µ . Many
monographs have been devoted to the study of this important class of statistical
models, e.g. [1, 3, 2].

The canonical statistics

T = (T1, . . . ,Tm) : X → Y = T (X )⊂ Rm

map the statistical model (1) to the canonical exponential family

p(t;θ) = exp

(
m

∑
j=1

θ jt j−ψ(θ)

)
, θ ∈ Rm, (2)

where the new state space is (Y ,ν), with ν = µ ◦ T−1. In Equation (2), all the
canonical statistics are coordinate projections.

Another useful parameterization is the monomial parameterization, which is ob-
tained from (1) by introducing the exponentials ζ j = eθ j of each canonical parameter
θ j, j = 1, . . . ,m,

p(x;ζ ) ∝

m

∏
j=1

ζ
Tj(x)
j , ζ ∈ Rm

+. (3)

This presentation is especially useful in the lattice case, i.e. when the canonical
statistics are integer valued. This is the case which has been studied with the meth-
ods of Algebraic Statistics, see e.g. [11, Sec. 6.9], [8].

While Equations (1) and (3) are equivalent for positive densities, an interesting
phenomenon appears if the conditions ζ j > 0 are relaxed to ζ j ≥ 0. In such a case,
(3) makes sense and an extension of the original model is obtained, see [12, 13].
Assume we let just one of the ζ j’s, say ζ1, to be zero. It follows that the correspond-
ing unnormalized density is zero if T1(x) 6= 0 and is positive for T1(x) = 0, giving
rise to densities with support {T1 = 0} which form a new exponential family. The
exponential family (1) is extended with exponential families of defective support
and the extension actually depends on the canonical statistics used to describe the
exponential statistical model. For example, if the canonical statistics are never zero,
no such extension is possible.

Statistical models of type (1) admit an implicit representation, see [11, 10]. Let
1⊕V = Span(T0 = 1,T1, . . . ,Tm) be the linear space generated by the canonical
statistics together with the constant 1, and let k1, . . . ,kl be a linear basis of the or-
thogonal space (1⊕V )⊥, i.e., 1,T1, . . . ,Tm,k1, . . . ,kl is a linear basis of L2(X ,µ)
and

∑
x∈X

ki(x)Tj(x)µ(x) = 0, i = 1, . . . , l, j = 0, . . . ,m.

If we introduce the (m+1)×n matrix A = [Tj(x)µ(x)], j = 0, . . . ,m, x∈X , T0 = 1,
then Span(k1, . . . ,kl) = kerA. The case where A is integer valued is discussed in [8].
The general case is discussed in [14].

Since log p(·;θ) is an affine function of the canonical statistics Tj’s, a density p
belongs to the exponential model (1) if and only if p is a positive density of (X ,µ)
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and
∑

x∈X
k(x)µ(x) log p(x) = 0, k ∈ Span(k1, . . . ,kl) . (4)

More precisely, if p = p(·;θ) in (1) for a θ , then (4) holds true; vice versa, if
∑x∈X k(x)µ(x) log p(x) = 0 holds true for k = ki, i = 1, . . . , l, then p = p(·;θ) for
some θ .

Equation (4) is equivalent to the following equation

∏
x∈X

p(x)h(x) = 1,
h(x)
µ(x)

∈ Span(k1, . . . ,kl) , (5)

or, clearing the denominators,

∏
x : h(x)>0

p(x)h+(x) = ∏
x : h(x)<0

p(x)h−(x),
h(x)
µ(x)

∈ Span(k1, . . . ,kl) , (6)

where h = h+−h− and h+,h− ≥ 0. Equation (6) makes sense outside the exponen-
tial model, i.e. if we assume p(x) ≥ 0. Assume X0 = Supp p is strictly contained
in X and satisfies Equation (5). Therefore, p belongs to the exponential family
associated to the space V0 = Span

(
k|X0

)⊥ ⊂ L2
(
X0,µ|X0

)
.

2 Trace, closure, marginal polytope

In the present section we discuss two general methods under which the reduction
of the support appears, namely the trace operation and the limit operation. For each
event S ⊂X , the trace on S of the exponential family in (1) is the exponential
family defined on (S ,µ|S) by conditioning on S .

We denote by M> the convex set of strictly positive densities and by M≥ the
convex set of densities. Both sets are endowed with the weak topology, i.e., if pn, n=
1,2, . . . , and p are densities, then limn→∞ pn = p means limn→∞ pn(x) = p(x) for all
x∈X . In general, the exponential model (1) is not closed in the weak topology. The
extended exponential family is the closure in the weak topology of an exponential
family (1). An extended exponential family according to this definition is a set of
densities. A proper parameterization of the extended family requires the use of the
expectation parameters and the identification of their range.

Definition 1. The convex support, cf. e.g [3, 2, 6], or marginal polytope, see [19],
and also [9], of the exponential family (1) is the convex hull of Y = T (X ),

co(imT ) =

{
η ∈ Rm,η =

m

∑
j=1

λ jt j : λ j ≥ 0,
m

∑
j=1

λ j = 1

}
.
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The previous set-up covers the behavior of the exponential family and its param-
eterization with the expectation parameters in the interior of the marginal polytope,
see [2]. The discussion of the parameterization of the extended family requires the
notion of exposed subset.

Definition 2. 1. A face of the marginal polytope M is a subset F ⊂ M such that
there exists an affine mapping A : Rm 3 t 7→ A(t) ∈ R which is zero on F and
strictly positive on M \F .

2. A subset S ⊂X is exposed for the exponential family (2) if S = T−1(F) and F
is a face of the marginal polytope.

The following theorem is a minor improvement of known results.

Theorem 1. Let θn, n = 1,2, . . . , be a sequence of parameters in Equation (1) such
that for some q∈M≥ we have limn→∞ p(x;θn)= q(x), i.e., q belongs to the extended
exponential model.

1. If the support of q is full, {q > 0}= X , then q belongs to the exponential family
(1) for some parameter value θ = limn→∞ θn.

2. If the support of q is defective, then the sequence θn is not convergent, Suppq =
{q > 0} is an exposed subset of X , and q belongs to the trace of the exponential
family on the reduced support.

Proof. Let X0 = {x ∈X : q(x)> 0}, X1 = {x ∈X : q(x) = 0}. For each x ∈X0,
we have limn→∞ log p(x;θn) = logq(x) by continuity; for each x ∈ X1, we have
limn→∞ log p(x;θn) =−∞. From (4) we get

∑
x∈X0

logq(x)k(x)µ(x)+ lim
n→∞

∑
x∈X1

log p(x;θn)k(x)µ(x) = 0, (7)

with k ∈ Span(k1, . . . ,kl).

1. If the set X1 is empty, then q belongs to the exponential model because Equation
(7) reduces to (4). The convergence limn→∞ ηn = limn→∞ Eθn [T ] = Eq [T ] = η

in M◦ implies the convergence of the θ parameters ( mod the identifiability
constraints).

2. If the set X1 is not empty, the second term of the LHS of (7) has to be finite, so
that no linear combination of the ki’s can be definite in sign. Otherwise, the limit
would diverge. In other words, the problem

k : X1 3 x 7→
l

∑
i=1

λiki(x)≥ 0 and k 6= 0 for at least one x (8)

is not satisfiable. By the Theorem of the alternative, see e.g. [16, Ch. 15], the non
satisfiability of (8) is equivalent to the existence of a positive solution u(1)(x)> 0,
x ∈X1, to the problem

∑
x∈X1

u(1)(x)k(x)µ(x) = 0, k ∈ Span(k1, . . . ,kl) .
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The random variable

u(x) =

{
0 if x ∈X0,

u(1)(x) if x ∈X1,

is orthogonal to all ki’s, so that there exist a0,a1, . . . ,am such that

u(x) = a0 +
m

∑
j=1

a jTj(x). (9)

The conclusion on the support now follows from (9). In fact, for each t ∈Y such
that T−1(t)∈X1 the linear function a0+∑ j a jt j is positive, while for each t such
that T−1(t) ∈X0 takes value zero, so that the points in X1 are the points of an
exposed set of the face of M identified by (9).
Finally, on the support of q, logq is a linear combination of the Tj’s being a limit
in the linear space generated by those functions. ut

Theorem 2. If q belongs to the trace of the exponential family (1) with respect to an
exposed subset S, then q belongs to the extended exponential model.

Proof. We generate sequences that admit as limit a generic density in the trace
model by considering a one-dimensional (Gibbs) sub-model. Let F be the face of
the marginal polytope such that S = T−1(F) and let A be an affine function such that
A(η) = 0 for η ∈ F and A(η) > 0 for η ∈M \F . We can chose A such that A ◦T
belongs to the space generated by 1,T1, . . . ,Tm, i.e. A◦T = α0 +∑

m
j=1 α jTj. We can

take α0 = 0 if 1 ∈ Span(Tj : j = 1, . . . ,m).
Let θ̄ be a value of the canonical parameter such that

q(x) =


exp
(

∑
m
j=1 θ̄ jTj(x)

)
∑x∈S exp

(
∑

m
j=1 θ̄ jTj(x)

)
µ(x)

if x ∈ S,

0 if x ∈X \S.

For β ∈ R,

βA+
m

∑
j=1

θ̄ jTj =
m

∑
j=1

(βα j + θ̄ j)Tj +βα0,

so that the one-dimensional statistical model

pβ = exp

(
β (A−α0)+

m

∑
j=1

θ̄ jTj−ψ(βα + θ̄)

)
, β ∈ R,

is a sub-model of (1). The family of densities

pβ

p0
= exp

(
β (A−α0)−

(
ψ(βα + θ̄)−ψ(θ̄)

))
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is a one-dimensional exponential family whose canonical statistics A−α0 reaches
its minimum value−α0 on S. Therefore, if βn→−∞, n→∞, its limit is the uniform
distribution on S and, consequently, pβn is convergent to q. ut

3 Toric families

In this section we assume the exponential family (1) to be of lattice type, i.e. we
assume that the m× n matrix A = [Tj(x)µ(x)], j = 1, . . . ,m and x ∈ X , is non-
negative integer valued. Hence, the exponential family can be written as in Equation
(3) and takes the monomial parametric form

p(x;ζ ) ∝ ∏
j : A j(x)>0

ζ
A j(x)
j , ζ j ≥ 0, j = 1, . . . ,m. (10)

In [8] the statistical model (10) is called the A-model, see also [7]. If all ζ j’s are
positive, then (10) is the exponential family with a different parameterization. If we
let one, or more, of the ζ j’s to be zero, either the monomials in (10) are zero for all
x ∈X , in which case no probability is defined, or the monomials are non-zero for
some x, giving rise to a statistical model with restricted support, see the discussion
in [8].

Each integer vector k such that Ak = 0, i.e. k ∈ kerZ A, splits into its positive and
negative part, k = k+− k−, and we have

∏
x : k+(x)>0

p(x,ζ )k+(x) = ∏
x : k−(x)>0

p(x;ζ )k−(x), k ∈ kerZ A. (11)

The statistical model defined by the infinite system of binomial equations (11) is
called the toric model of A, as defined in [11]. Again, if all the probabilities in (11)
are positive, then the toric model is just the exponential family. If some probabilities
are zero, then the toric model implies the A-model. In fact, substitution of (10) into
(11) leads to an algebraic identity, without any restriction on the parameters ζ j.

The existence of a finite generating set for Equation (11) is discussed in details in
[8], see also [7]. Moreover, in [8] it is proved that each probability in the extended
exponential family satisfies (11). We shall obtain a related result in a different way.

One could consider a second l×n matrix B with the same integer ker as A. The
exponential model would be the same, but the border cases could be different. The
problem of finding a suitable maximal monomial model is considered in [13]. This
approach has been applied in [5] to the Bayesian analysis of tables with structural
zeros. Here, we show that all of the extended exponential family is actually param-
eterized by this maximal monomial model. For a related approach see [15].

The maximality of the monomial model is defined as follows. Consider the ma-
trix A ∈ Zm×n and assume that the constant vectors belong to the row space. Let the
column span of the matrix K = [k1 · · ·kl ]∈Zn×l be kerQ A. The integer matrix K can
be computed by a symbolic algebra software, such as [4, 18]. Consider all possible
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rows of a matrix equivalent to A,

B =
{

b ∈ Zn
+ : b 6= 0,bT K = 0

}
.

The set B is closed for the sum of vectors. It is proved in [17] that an inclusion-
minimal generating set, called Hilbert basis, exists. The Hilbert basis can be com-
puted by symbolic software and it is usually larger than a linear basis.

Theorem 3. Let us consider the set of non-negative and non-zero integer vectors
that are orthogonal to kerZ A and let b1, . . . ,bl be its unique Hilbert basis. Define the
l×n matrix B whose rows are the elements of the Hilbert basis. Hence, the extended
exponential family is fully parametrized by the B-model with non-negative parame-
ters. Each one of the maximal exposed subsets of the A-model, i.e. S = T−1(F) and
F is a facet, is obtained by letting one of the ζ j’s to be zero.

Proof. The constant vector belongs to B, so that 1,b1, . . . ,bl is a generating set, pos-
sibly non-minimal. The sets S j =

{
x ∈X : b j(x) = 0

}
, j = 1, . . . , l are not empty,

unless b j is constant. In fact, if m j = minx b j(x) > 0 and b j(x) 6= 0 for some x, the
vector b j−m j belongs to B, and therefore can be represented as

b j(x)−m j =
l

∑
i=1

nibi(x), x ∈X .

If n j 6= 0, the basis is not minimal. If n j ≥ 1, subtracting b j(x) from both sides, we
get, by inspection of the signs of the two sides, that m j = 0.

Each non empty S j is an exposed set of the exponential family. In fact, each
element of the Hilbert basis belongs to the row Q-space of the original matrix A, so
that

b j(x) = β0 j +
m

∑
i=1

βi jai(x), j = 1, . . . , l,

where ai is the i-th row of A. The definition of exposed set is easily checked.
Vice-versa, let S be an exposed set, i.e.

b(x) = β0 +
m

∑
i=1

βiai(x),

with S = {x : b(x) = 0} and b(x) > 0 for each x /∈ S. As A has integer entries, the
coefficients β0,β1, . . . ,βl can be chosen to have integer values, therefore b ∈B and
it is a sum of elements of the Hilbert basis,

b(x) =
l

∑
j=1

α jb j(x).

Therefore, S = ∩ j : α j 6=0S j. The additive representation of b for maximal exposed
sets contains only one term. ut
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